• Title/Summary/Keyword: 버스정보

Search Result 1,087, Processing Time 0.026 seconds

Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis (디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링)

  • An, Sehwan;Ko, Kangwook;Kim, Youngmin
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.129-152
    • /
    • 2022
  • As a key infrastructure for digital transformation, the spread of data, network, artificial intelligence (D.N.A.) fields and the emergence of promising industries are laying the groundwork for active digital innovation throughout the economy. In this study, by applying the text mining methodology, major topics were derived by using the abstract, publication year, and research field of the study corresponding to the SCIE, SSCI, and A&HCI indexes of the WoS database as input variables. First, main keywords were identified through TF and TF-IDF analysis based on word appearance frequency, and then topic modeling was performed using g-DMR. With the advantage of the topic model that can utilize various types of variables as meta information, it was possible to properly explore the meaning beyond simply deriving a topic. According to the analysis results, topics such as business intelligence, manufacturing production systems, service value creation, telemedicine, and digital education were identified as major research topics in digital transformation. To summarize the results of topic modeling, 1) research on business intelligence has been actively conducted in all areas after COVID-19, and 2) issues such as intelligent manufacturing solutions and metaverses have emerged in the manufacturing field. It has been confirmed that the topic of production systems is receiving attention once again. Finally, 3) Although the topic itself can be viewed separately in terms of technology and service, it was found that it is undesirable to interpret it separately because a number of studies comprehensively deal with various services applied by combining the relevant technologies.

Early Prediction of Fine Dust Concentration in Seoul using Weather and Fine Dust Information (기상 및 미세먼지 정보를 활용한 서울시의 미세먼지 농도 조기 예측)

  • HanJoo Lee;Minkyu Jee;Hakdong Kim;Taeheul Jun;Cheongwon Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Recently, the impact of fine dust on health has become a major topic. Fine dust is dangerous because it can penetrate the body and affect the respiratory system, without being filtered out by the mucous membrane in the nose. Since fine dust is directly related to the industry, it is practically impossible to completely remove it. Therefore, if the concentration of fine dust can be predicted in advance, pre-emptive measures can be taken to minimize its impact on the human body. Fine dust can travel over 600km in a day, so it not only affects neighboring areas, but also distant regions. In this paper, wind direction and speed data and a time series prediction model were used to predict the concentration of fine dust in Seoul, and the correlation between the concentration of fine dust in Seoul and the concentration in each region was confirmed. In addition, predictions were made using the concentration of fine dust in each region and in Seoul. The lowest MAE (mean absolute error) in the prediction results was 12.13, which was about 15.17% better than the MAE of 14.3 presented in previous studies.

Comparison of Micro Mobility Patterns of Public Bicycles Before and After the Pandemic: A Case Study in Seoul (팬데믹 전후 공공자전거의 마이크로 모빌리티 패턴 비교: 서울시 사례 연구)

  • Jae-Hee Cho;Ga-Eun Baek;Il-Jung Seo
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.235-244
    • /
    • 2022
  • The rental history data of public bicycles in Seoul were analyzed to examine how pandemic phenomena such as COVID-19 caused changes in people's micro mobility. Data for 2019 and 2021 were compared and analyzed by dividing them before and after COVID-19. Data were collected from public data portal sites, and data marts were created for in-depth analysis. In order to compare the changes in the two periods, the riding direction type dimension and the rental station type dimension were added, and the derived variables (rotation rate per unit, riding speed) were newly created. There is no significant difference in the average rental time before and after COVID-19, but the average rental distance and average usage speed decreased. Even in the mobility of Ttareungi, you can see the slow rhythm of daily life. On weekdays, the usage rate was the highest during commuting hours even before COVID-19, but it increased rapidly after COVID-19. It can be interpreted that people who are concerned about infection prefer Ttareungi to village buses as a means of micro-mobility. The results of data mart-based visualization and analysis proposed in this study will be able to provide insight into public bicycle operation and policy development. In future studies, it is necessary to combine SNS data such as Twitter and Instagram with public bicycle rental history data. It is expected that the value of related research can be improved by examining the behavior of bike users in various places.

Spatio-temporal Analysis of Population Distribution in Seoul via Integrating Transportation and Land Use Information, Based on Four-Dimensional Visualization Methods (교통과 토지이용 정보를 결합한 서울 인구분포의 시공간적 분석: 4차원 시각화 방법을 토대로)

  • Lee, Keumsook;Kim, Ho Sung
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.20-33
    • /
    • 2018
  • Population distribution in urban space varies with transportation flow changing along time of day. Transportation flow is directly affected by the activities of urbanites and the distribution of related facilities, since the flow is the result of moving to the point where the facilities associated with their activities are located. It is thus necessary to analyze the spatio-temporal characteristics of the urban population distribution by integrating the distribution of activity spaces related to the daily life of urbanites and the flow of transportation. The purpose of this study is to analyze the population distribution in urban space with daily and weekly time bases using the building database and T-card database in the city of Seoul, which is rich in information on land use and transportation flow. For a time-based analysis that is difficult to grasp by general statistical techniques, a four-dimensional visualization method combining time and space using a Java program is devised. Dynamic visualization in the four-dimensional space and time allows intuitive analysis and makes it possible to understand more effectively the spatio-temporal characteristics of population distribution. For this purpose, buildings are classified into three activity groups: residential, working, and commercial according to their purpose, and the number of passengers traveling to and from each stop site of bus and subway networks in the T-card database for one week is calculated in one-minute increments, Visualizing these and integrating transportation and land use, we analyze spatio-temporal characteristics of the population distribution in Seoul. As a result, it is found that the population distribution of Seoul displays distinct spatio-temporal characteristics according to land use. In particular, there is a clear difference in the population distribution pattern along the time axis according to the mixed aspects of working, commercial, and residential activities. The results of this study can be very useful for transportation and location planning of city facilities.

A Dynamic Prefetch Filtering Schemes to Enhance Usefulness Of Cache Memory (캐시 메모리의 유용성을 높이는 동적 선인출 필터링 기법)

  • Chon Young-Suk;Lee Byung-Kwon;Lee Chun-Hee;Kim Suk-Il;Jeon Joong-Nam
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.123-136
    • /
    • 2006
  • The prefetching technique is an effective way to reduce the latency caused memory access. However, excessively aggressive prefetch not only leads to cache pollution so as to cancel out the benefits of prefetch but also increase bus traffic leading to overall performance degradation. In this thesis, a prefetch filtering scheme is proposed which dynamically decides whether to commence prefetching by referring a filtering table to reduce the cache pollution due to unnecessary prefetches In this thesis, First, prefetch hashing table 1bitSC filtering scheme(PHT1bSC) has been shown to analyze the lock problem of the conventional scheme, this scheme such as conventional scheme used to be N:1 mapping, but it has the two state to 1bit value of each entries. A complete block address table filtering scheme(CBAT) has been introduced to be used as a reference for the comparative study. A prefetch block address lookup table scheme(PBALT) has been proposed as the main idea of this paper which exhibits the most exact filtering performance. This scheme has a length of the table the same as the PHT1bSC scheme, the contents of each entry have the fields the same as CBAT scheme recently, never referenced data block address has been 1:1 mapping a entry of the filter table. On commonly used prefetch schemes and general benchmarks and multimedia programs simulates change cache parameters. The PBALT scheme compared with no filtering has shown enhanced the greatest 22%, the cache miss ratio has been decreased by 7.9% by virtue of enhanced filtering accuracy compared with conventional PHT2bSC. The MADT of the proposed PBALT scheme has been decreased by 6.1% compared with conventional schemes to reduce the total execution time.

The Impact of Edu-Tech and Tangible and Intangible Services of Private Institutes on parents' Intention for Re-Enrollment: The Moderating Effect of Rapport-Building Behavior (학원의 에듀테크특성과 유·무형적서비스가 학부모의 재수강의도에 미치는 영향: 라포형성행동의 조절효과)

  • Jeon, Ji-Yeon;Ha, Tae-Kwan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.4
    • /
    • pp.127-139
    • /
    • 2024
  • This study investigates the impact of edutech characteristics and both tangible and intangible educational services on the intention to re-enroll, which is directly related to the management performance of private institutes. The study aims to propose strategies to improve re-enrollment intentions and management performance based on the findings. Private education has grown continuously, complementing the limitations of public education and increasing parental dependence. This study tested the hypothesis that edutech characteristics, intangible services, and tangible services, increasingly utilized with the development of information and communication technology, would influence re-enrollment intentions. It also examined whether rapport-building behavior with parents would have a moderating effect on this relationship. The hypothesis testing results showed that among the edutech characteristics, content, intangible services such as reliability and empathy, and tangible services such as tangibility and payment accessibility positively impacted re-enrollment intentions. The hypothesis that rapport-building behavior would moderate the relationship between educational services and re-enrollment intentions was supported for empathy in intangible services and tangibility in tangible services. Based on these findings, the study proposed three strategies to improve management performance of private institutes. First, in terms of improving and managing edutech characteristics, it suggested introducing and updating edutech content and ensuring operational stability. Second, for improving and managing intangible services, it recommended managing instructor recruitment and training to enhance quality and competence, maintaining professionalism through continuous education by credible institutions, and providing level-based education for students based on the qualitative improvement of educational programs. Third, to improve and manage tangible services, it suggested setting appropriate tuition fees, offering various payment methods (online, mobile, card, bank transfer) unrestricted by time and place, and equipping interiors and facilities that enable focused learning. Additionally, considering the moderating effect of rapport-building behavior, it emphasized that improvements and management requiring costs are necessary, but making parents feel a high level of tangibility through rapport-building is also important. Furthermore, given the increasing importance of edutech based on information and communication technology, the study highlighted the need for various support measures such as government technological support and venture certification system support for institutes with an entrepreneurial spirit aiming to introduce innovative technologies such as AI technology based on large language models and AR/VR-applied metaverse environments. This study is expected to help improve the management performance of private institutes by specifically suggesting items and methods for improvement and management in the educational field.

  • PDF

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.