소프트웨어의 유지보수 단계에서 소프트웨어의 버그 리포트는 개발자에게 유용한 정보를 제공한다. 개발자들은 버그 수정이나 변경 내역 열람 등 다양한 작업을 위해 버그 리포트를 열람한다. 하지만, 대화 형식으로 작성되는 버그 리포트의 특징 때문에 버그 리포트는 종종 매우 길거나 장황하여 이를 읽고 이해하기 어려운 경우가 많다. 이러한 문제점을 해결하기 위한 방법으로 버그 리포트의 요약문을 자동으로 생성하는 기법을 제안하였고, 다양한 관련 연구가 진행되었다. 그러나, 기존에 제안된 버그 리포트 요약 기법들은 버그 리포트만의 고유한 특성들을 활용하지 않는 경우가 많다. 본 연구에서는 버그 리포트들 사이의 중복(duplicates), 의존(depends-on), 역의존(blocks) 관계들을 이용한 PageRank 알고리즘 기반 버그 리포트 요약 기법을 제안한다. 실험 결과 제안 기법이 기존 버그 리포트 요약 기법보다 요약 품질과 적용 범위 측면에서 뛰어남을 확인하였다.
소프트웨어 개발 및 유지보수 단계에서 발생한 문제들은 버그 추적 시스템을 통해 버그리포트로 등록되고 관리된다. 등록된 버그리포트를 기반으로 배정자는 해당 문제를 해결할 수 있는 개발자들을 배정하고, 배정된 개발자는 이를 해결한다. 그러나 버그리포트에서 제공되는 정보가 정확하지 않을 경우 문제 해결에 많은 시간이 소모된다. 본 논문에서는 Eclipse 오픈소스 프로젝트들에 대해 12가지의 도메인으로 분류하여 총 395,967개의 버그리포트에 대해 초기 정보의 불완전성을 분석한다. 이를 위해 초기 버그리포트에서 제공되는 정보 중 메타필드 내 정보에 초점을 맞춘다. 분석결과 필드들이 도메인 별로 최소 6%, 평균 20%, 최대 33%가 최소 한 번 이상 변경되는 것을 확인하였으며, 프로젝트 도메인 별로 상이하게 변경되는 것을 확인할 수 있었다.
최근 많은 게임들이 개발되고 경쟁하면서 게임 서비스에 대한 중요성이 대두되고 있다. 이 중에서도 버그리포트 시스템은 향후 온라인게임 서비스 향상을 위한 중요한 요소이다. 사례 분석을 통해 현재 서비스되고 있는 버그리포트 시스템의 문제점을 도출하고, 개선하고자 한다. 사용자의 편리성과 운영자의 신속, 정확한 버그 수집을 위한 새로운 버그리포트 시스템을 제안한다.
Recently developed software systems have many components, and their complexity is thus increasing. Last year, about 375 bug reports in one day were reported to a software repository in Eclipse and Mozilla open source projects. With so many bug reports submitted, developers' time and efforts have increased unnecessarily. Since the bug severity is manually determined by quality assurance, project manager or other developers in the general bug fixing process, it is biased to them. They might also make a mistake on the manual decision because of the large number of bug reports. Therefore, in this study, we propose an approach of bug severity prediction to solve these problems. First, we find similar topics within a new bug report and reduce the candidate reports of the topic by using the meta field of the bug report. Next, we train the reduced reports by applying Naive Bayes Multinomial. Finally, we predict the severity of the new bug report. We compare our approach with other prediction algorithms by using bug reports in open source projects. The results show that our approach better predicts bug severity than other algorithms.
As fixing bugs is a large part of software development and maintenance, estimating the time to fix bugs -bug fixing time- is extremely useful when planning software projects. Therefore, in this study, we propose a way to estimate bug fixing time using bug reports. First, we classify previous bug reports with meta fields by applying a k-NN method. Next, we compute the similarity of the new bug and previous bugs by using data from bug reports. Finally, we estimate how long it will take to fix the new bug using the time it took to repair similar bugs. In this study, we perform experiments with open source software. The results of these experiments show that our approach effectively estimates the bug fixing time.
Bug reports are essential documents for developers to localize and fix bugs. These reports contain information regarding software bugs or failures that occur during software operation and maintenance phase. Information Retrieval-based Bug Localization (IR-BL) techniques have been proposed to reduce the time and cost it takes for developers to resolve bug reports. However, if a low-quality bug report is submitted, the performance of such techniques can be significantly degraded. To address this problem, we propose a quality prediction method that selects low-quality bug reports. This process; defines a Quality property of a Bug report as a Query (Q4BaQ) and predicts the quality of the bug reports using machine learning. We evaluated the proposed method with 3 open source projects. The results of the experiment show that the proposed method achieved an average F-measure of 87.31% and outperformed previous prediction techniques by up to 6.62% in the F-measure. Finally, a combination of the proposed method and traditional automatic query reformulation method improved the MRR and MAP by 0.9% and 1.3%, respectively.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.5
/
pp.235-241
/
2015
Nowadays, research and industry on the internet of things is rapidly developing. Bug fixed field of the Software development related internet of things is a very important things. In this study, we analyze the properties that can affect what the bug fix-time by analyzing the time required to fix a bug associated with the Internet of Things. Using the k-NN classification method based on the attribute information to be classified as bug reports. Extracts a bug report based on the results of a similar property. Bug fixed by calculating the time of a similar bug report predicts the fix-time for new bugs. Depending on the prediction of the properties that affect the bug correction time, the properties of os, component, reporter, and assignee showed the best prediction accuracy.
비용 효율적인 소프트웨어 유지보수 방안에 대한 기대가 높다. 본 논문에서는 유지보수 비용을 감소시키기 위해 회귀 테스트에 사용되는 테스트케이스를 효과적으로 우선순위화하는 방안을 제안한다. 테스트케이스를 우선순위화하는 방법으로는 코드의 커버리지를 이용해 테스트케이스의 우선순위를 높이는 방법과 모델 기반 테스트케이스 우선순위화 방법 등 여러 가지 방법이 제안되어 왔다. 본 논문에서는 소스코드, 커밋 로그와 버그리포트의 정보를 이용해 정보검색 기반의 테스트케이스 우선순위화 기법을 제안한다. 변경된 소스코드 이력은 새로운 기능의 업데이트 유무를 확인 할 수 있으며, 결함으로 수정된 파일을 추측할 수 있다. 버그 리포트는 소스코드의 결함에 대한 정보를 담고 있다. 제안한 방법의 유효성을 확인하기 위해 오픈소스 프로젝트(Joda-Time, Commons-Lang)를 이용해 실험을 진행하였다. 실험을 통해 소스코드, 커밋 로그와 버그리포트로 테스트케이스 우선순위화 방법의 유효성을 확인했으며, 버그리포트를 적용해 테스트케이스 우선순위화 기법을 이전 연구에 비해 최대 8% 향상된 결과를 확인 할 수 있었다.
Kim, Young-Kyoung;Heo, Jin-Seok;Kim, Misoo;Lee, Eun-seok
Annual Conference of KIPS
/
2018.10a
/
pp.512-514
/
2018
최근 보안 버그의 중요성이 증가함에 따라, 버그 리포트 중 보안과 관련된 리포트를 빠르게 분류하는 기술이 필요하다. 기존 기술들은 버그 리포트의 단어들을 가지고 기계학습을 위한 훈련 데이터를 생성한다. 이 때 기계학습에 잡음이 발생하면 성능을 떨어뜨릴 수 있다. 이를 보완하기 위해 본 연구에서는 감정 단어를 활용하여 잡음을 줄인 보안 버그리포트를 자동으로 식별하는 기계학습기반 기술을 제안한다. 제안 기술은 기계학습 시 사용되는 훈련 데이터의 품질을 높이기 위해 감정 단어를 활용한다. 실험 결과 감정 단어를 활용했을 때 기존 기술 대비 보안 버그를 분류하는 정확도가 3.03% 향상되었다.
Recently, software projects have been increasing and getting complex. Due to the large number of submitted bug reports, developers' workload increases. Generally in bug triage process, the triagers assign the bug report to fixer (developer) in order to resolve the bug. However, bug reports have been reassigned to other developers because fixers are not suitable. This is why the triagers did not correctly check and understand the bug report and decide the appropriate developers to fix the bug. This results in increase of developers' time and efforts in software maintenance. To resolve these problems, in this paper, we propose a novel method for developer recommendation based on topic model and social network. First, we build a basis of topic(s) from bug reports. Next, when a new bug report (test data set) comes, we select the most similar topic(s) and extract the participated developers from the topic(s). Finally, by applying social network, we analyze the developers' behavior (comment and commit activity) and recommend the appropriate developers. In this paper we compare our work with related studies through performance experiments on open source projects. The results show that our approach is more effective than other studies in bug triage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.