• Title/Summary/Keyword: 밸브 스프링

Search Result 73, Processing Time 0.023 seconds

Analysis of rear suspension using airspring (공기스프링 현가장치 성능해석)

  • Tak, tae-oh;Kim, kum-Chul
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.31-42
    • /
    • 1999
  • This paper presents a method for evaluating the performance of a leaf spring suspension and an air spring suspension systems for trucks in terms of ride and handling. Leaf springs, which generally have non-linear progressive force-deflection characteristics, are modeled using beam and contact elements. The leaf spring analysis model shows good correlation with experimental results. Each component of an air spring suspension system, which is a single leaf, air spring, height control valve, compressor and linkages, is modeled appropriately. Non-linear characteristics of air spring are accounted for using the measured data, and pressure and volume relations for height control system is also considered. The wheel rate of the air suspension is taken lower but roll stiffness is taken higher than those of leaf springs to improve ride and handling performance, which is verified through driving simulations.

  • PDF

Fault Diagnosis for High Pressure Turbine Valve using Fuzzy Logic (퍼지 논리를 이용한 원자력 발전소 고압터빈 밸브 고장진단)

  • Kim Yeon-Tae;Jeong Byeong-Uk;Baek Gyeong-Dong;Kim Seong-Sin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.79-82
    • /
    • 2006
  • 본 논문은 원자력 발전소의 주요 제어계통 중에서 터빈 조속기 제어계통에 관련한 성능평가를 목적으로 한다. 터빈 조속기 계통은 고압의 유압계통으로 구성되어 있어 구동설비가 복잡하다. 복잡한 기계설비는 운전 중 많은 오동작에 의한 고장을 일으키고, 유지보수에 어려움이 있다. 이러한 복잡한 기계설비에 있어 운전원에 의한 기계성능 평가는 불리한 점이 많다. 예를 들어 서로 다른 시간에서 일어나는 같은 상황에 대해 다른 판단을 내릴 수 있다는 점이다. 터빈 조속기 계통의 기계설비에 있어서 터빈 밸브 유압공급 및 구동장치는 각 터빈벨브 자체에 부착되어 있어 터빈벨브를 동작시킨다. 터빈벨브들은 구동기 유압 서보실린더(Actuator Hydraulic Servo Cylinder)에 의해 열리고 압축된 스프링에 의해 닫힌다. 이러한 시스템을 진단하기 위해서 본 논문에서는 밸브의 내부 압력의 특징정보를 입력으로 하는 퍼지이론을 적용하여 터빈 밸브 구동설비의 성능을 판단하고자 한다. 퍼지이론에 적용하기위해 터빈 조속기 제어계통의 고압 터빈 조절 벨브와 고압 터빈 정지 밸브의 압력변화 데이터를 이용한다. 퍼지이론의 적용과정에서 퍼지 Rule은 실제 운전원이 압력변화 데이터에 대한 판단기준을 근거로 하여 정하기로 한다. 그리고 퍼지이론에 적용한 결과를 분석하고 실제 터빈 조속기 계통의 전문가가 판단 결과와 비교하였다.

  • PDF

An Experimental Study on the Effect of Valve Train Design Parameters on the Diesel Engine Valve Rotation (디젤엔진의 밸브회전에 미치는 밸브트레인 설계변수들의 영향에 관한 실험적 연구)

  • Kim, Do-Joong;Jeong, Young-Jong;Lee, Jung-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper we present the effects that valve train design parameters and operating conditions have on the valve rotation properties of a diesel engine. Rotation of intake and exhaust valves are very closely related to the long term durability of diesel engines. of the valves do not rotate even at a rated engine speed, it causes the uneven wear of the valve seat and valve head contact area, which eventually shortens the engine life. Because the rated speed of a diesel engine is relatively lower than that of a gasoline engine, the operating condition of a diesel engine produces tough environment for valve rotation. Therefore, the valve rotation is an important problem which should be solved in the early stage of engine development. In this study, we developed a new technique to measure the valve rotation and shaking motion simultaneously using three proximity sensors. Valve train rotating properties of a diesel engine were measured under various engine operating conditions.

Technology Trend of Small Poppet Type Check Valve for Aerospace Application (항공우주용 소형 포펫 체크밸브 기술 동향)

  • Yoo, Jae-Han;Lee, Soo-Yong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.158-164
    • /
    • 2011
  • Check valves developed for aerospace applications and commercially available for the applications are investigated. The examples include the ones for launch vehicles, SSME (Space Shuttle Main Engine) and GSE (Ground Support Equipment) purges developed by NASA, requiring high reliability, and the ones by KARI. Also the commercial ones for room and cryogenic temperatures by major valve US companies. Relations of design factors such as seal materials and spring rate to principal performances like operating temperature/pressure and cracking pressure are explained. Then potential operational problems such as chatter and contaminations are explained. Also, filters, fittings for end connections and cleanliness requirements for the applications are considered.

  • PDF

Structural Evaluations of Bellows for a Gasgenerator Lox Shut-off Valve (가스발생기 산화제 개폐밸브용 벨로우즈 구조 평가)

  • Yoo, Jae-Han;Lee, Joong-Youp;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.279-282
    • /
    • 2011
  • The analysis and experimental results for the bellows of gasgenerator liquid oxygen shut-off valve are presented. The analyses are performed using EJMA (Expansion Joint Manufacturing Association) standard and the commercial FE (finite element) analysis program, Abaqus v6.9, at room and cryogenic temperatures. The results include the spring rate, the stress and the fatigue life of the bellows. The effects of the contact and material plasticity on the FE analysis results are also analyzed.

  • PDF

Overflow Valve and Performance Evaluation System for Diesel Cars based on Spring Load (스프링하중을 고려한 디젤차량용 오버플로우 밸브 성능평가)

  • Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.200-204
    • /
    • 2016
  • In this paper, we have estimated the performance of an overflow valve for EURO type CRDI(common rail direct injection) engine. In order to implement the overflow valve with friendly circumstance, it is necessity for considering spring load. Especially, the performance evaluation of diesel car with accuracy control will be considered a mileage improvement and circumstance regulation. In order to evaluate the performance of overflow valve, The leak test system checks the pressure, switching time and operating time under 3.0 bar below 100 cc, 3.3 bar among 150 cc and 200 cc, finally 4.0 bar upper 250 cc.

Design Criteria of Spring Stiffness for Pan Check Valve Using CFD Analysis (CFD 해석을 이용한 판형 체크 밸브에 대한 스프링 강성의 설계 기준)

  • Park, Ju-Yong;Baek, Seok-Heum;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.49-55
    • /
    • 2014
  • This paper examines the effects of spring characteristics and stiffness in relation to the characteristics of hydrodynamic force. Spring forces and stiffness determine the performance of this type of pan check valve and have an effect on the overall operation. The hydraulic efficiency of the pan check valve is relatively low compared to that of a common check valve. However, a pan check valve is structurally more stable than a common check valve. We implemented the optimum design to increase the flow rate and to resolve the suppression of the pressure drop according to the extent of the compression of the spring. From the results of a flow analysis, we demonstrate spring stiffness design criteria depending on the extent of the compression of the spring of pan check valve acting on the fluid at the inlet 1 MPa pressure.

A Study on the Force Balance of a Main Oxidizer shutoff Valve (산화제 개폐밸브의 힘평형에 관한 연구)

  • Jeon, Jae-Hyoung;Hong, Moon-Geun;Kim, Hyun-Jun;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.812-818
    • /
    • 2009
  • A MOV(Main Oxidizer shutoff Valve) controls the flow rate of liquid oxygen into the rocket combustor by opening and shutting operations piloted by a pneumatic force. In order to improve the effective design for sealing parts of poppet and piston assemblies, the poppet assembly has been designed to be just contacted with the piston assembly. However, to avoid a gap at the poppet/piston contact surface and to evaluate the MOV operating performance, an analyze on the force balance during the closing motion have been performed. For the accuracy of the analysis, the friction forces and the hydraulic forces have been respectively obtained by experiments and CFD analysis. Through the analysis, some important design parameters such as the spring constant, poppet friction and orifice size in the force balance have been introduced and the required operation performance of the MOV has been proved feasible.

Dynamic Characteristics for Fuel Shutoff Valve of a Gas Generator (가스발생기 연료개폐밸브의 동적 거동)

  • Lee, Joong-Youp;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • Fuel shutoff valve of a gas generator controls propellant mass flowrate of a rocket engine, by using pilot pressure and spring force. The developing fuel shutoff valve can be self sustained even though pilot pressure is removed in an actuator. Therefore, it is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure for the opening of the poppet and to determine the working fluid pressure at which the valve starts to close. This paper also has been designed dynamic model using the AMESim and predicted flow coefficient of the valve by Fluent CFD analysis. Various results from the prediction and the analysis have been compared with experiments. Finally, dynamic characteristics of the valve have been verified with experimental results.

Effects of Flow Rate and Discharge Pressure with Compressing Spring in Non-diaphragm Type Stem of Water Pressure Reducing Valve (급수용 감압밸브의 비다이어프램 스템에서 압축스프링에 따른 유량 및 토출압력 효과)

  • Byeon, Jae-Uk;Kim, Chi-Ho;Park, Seong-Hwan;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.103-109
    • /
    • 2019
  • The pressure reducing valve for water is controlled by the load of the compression spring and the force of the fluid acting on the diaphragm of the stem. Repeated upward and downward reciprocation of the pressure-reducing valve stem damages the diaphragm, resulting in leakage. In this study, we designed a stem without a diaphragm and adjusted the stiffness of the compressing spring. In order to select the spring stiffness, springs offering a stiffness of -20%, -10%, 0%, and 10% with respect to the stiffness of the compression spring attached to the existing pressure reducing valve stiffness. A prototype for the pressure reducing valve was fabricated and the pressure change was evaluated for the target static pressure (6 bar) by testing the pressure characteristics after mounting the modified stem and each compression spring. Evaluation of the pressure characteristics was carried out using ASSE 1003 and KS B 6153. In addition, the flow rates were compared by internal flow analysis of the conventional pressure reducing valve and the pressure reducing valve using the modified stems, and the flow analysis was performed using Solidworks flow simulation 2018. The spring stiffness was constantly discharged at the target static pressure of 3.793 kgf/mm, and the flow rate was increased by about 15% compared with the conventional pressure reducing valve.