• Title/Summary/Keyword: 밸브제어

Search Result 896, Processing Time 0.029 seconds

Design and Performance Evaluation of a Flow Regulator for Thrust Control of a Liquid Rocket Engine (액체로켓엔진 추력제어를 위한 유량제어밸브의 설계 및 성능 평가)

  • Jung, Tae-Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.443-446
    • /
    • 2012
  • A thrust control valve of a liquid rocket engine plays a role to increase or decrease the thrust of an LRE by modulating the flow rate of propellant into a gas-generator. This paper deals with a flow regulator that has functions of not only modulating thrust but also maintaining constant flow rate regardless of pressure change at inlet or outlet of the flow regulator. A direct acting flow regulator was fabricated and tested for the comparison of experimental and simulation results under steady-state conditions. The drawbacks and limitations of the flow regulator were analyzed. Also the new design of a flow regulator was proposed.

  • PDF

Experimental Study of Operating Parameters for Pneumatic Control Valve in Abnormal Conditions (공기구동 제어밸브 비정상상태 운전변수에 관한 실험적 연구)

  • Kim, Yang-seok;Kim, Dae-woong;Lee, Byoung-oh;Jeoung, Rae-hyuk;Lee, Seung-ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.613-619
    • /
    • 2016
  • A pneumatic control valve performs a major role in controlling the flow of a system or the level of a key tank in many power plants, and its performance should be guaranteed during the plant's lifetime. Its operation starts by supplying air to the pneumatic actuator or by exhausting the air from the actuator. To control the valve position, the amount of air supply or exhaust is adjusted by a control loop where various accessaries are equipped. In this paper, air leakage in the air supply line, changes in the valve packing force, and false adjustments of zero and the span of the positioner are simulated and analyzed using a 2-in pneumatic valve with a position control loop including an I/P converter and positioner, where the valve position is controlled within ${\pm}2%$ of the control pressure at 67% opening position.

Flow Rate Control Prediction Modeling for Large Liquid Rocket System During Engine Start Up (대형 로켓엔진시스템의 시동 시 유량제어 예측 모델링)

  • Jeong, Yu-Shin;Kim, Sang-Hoon;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.8-13
    • /
    • 2011
  • 본 연구에서는 대형 로켓엔진시스템의 시동 시 안정적인 유량공급을 위한 제어기 설계가 이루어졌다. 펌프, 오리피스, 제어밸브, 파이프, 인젝터 및 재생 냉각채널과 같은 엔진시스템 구성품들에 대한 동특성 모델링을 수행하였고 유량공급 제어가 가능한 밸브의 구동신호를 조절 가능한 PID 제어기를 설계하였다. 시동 시 안정적인 유량공급을 위하여 실험을 통해 얻은 밸브의 적정 개도율을 적용시켰으며, 이를 기준으로 하여 제어밸브의 작동신호를 조절하여 유량비를 제어하였다. 시뮬레이션 한 결과 제어기를 통해 시동 시 정상추력까지 유량공급을 제어 하는 방법이 적절함을 확인하였다.

  • PDF

Modular Modeling System(MMS)코드를 이용한 영광5,6호기 유출관계통에서의 과도현상 해석

  • 고용상;안장선;정장규;박병호;고득윤
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.526-531
    • /
    • 1996
  • 영광5,6호기 유출관계통은 영광3,4호기의 유출관계통과는 달리 세개의 유출수 압력강하 오리피스 및 유출관 오리피스 개폐밸브론 이용하여 유출유량 및 압력을 제어한다. 새로이 설계 변경된 유출관계통의 성능 및 운전을 평가하기 위해서 Modular Modeling System(MME) 코드를 이용하여 분석을 수행하였다. 분석결과 배압제어기 제어변수의 계수선정이 계통의 과도현상에 매우 큰 영향을 미치고 있기 때문에 배압제어기 제어변수 선정이 계통의 과도현상 완화에 매우 중요한 인자임을 알 수 있었다. 그리고 배압제어기의 계수만 적절하게 선정되어 있다면, 유출관오리피스 개폐밸브의 Stroke 속도변화에 따른 계통의 과도현상에 미치는 영향은 거의 없음을 알 수 있었다. 또한 유출관오리피스 개폐밸브 특성이 선형인 경우가 Equal Percentage 특성을 갖는 경우 보다 과도현상 방지측면에서 우수하며, 배압제어기 제어변수의 계수만 적절하게 잘 선정된다면 유출관오리피스 개폐밸브의 운전에는 관계없이 계통의 과도상태를 적절하게 제어할 수 있다는 것을 알 수 있었다.

  • PDF

Effect of Reynolds Number on the Flow Characteristics of a Control Valve (제어밸브 유량특성에 레이놀즈 수가 미치는 영향)

  • Jung, Taekyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.995-999
    • /
    • 2017
  • The factors affecting the flow coefficient of a control valve were identified and analyzed. The flow coefficient of a control valve are affected by not only Reynolds Number but also the figure and the roughness of the inlet/outlet pipes. Therefore, the flow coefficient is not a constant value. For the purpose of use in the system such as LRE, requiring the exact flow-coefficient of a control valve, the flow-coefficient should be measured under similar Reynolds Number using the inlet and outlet pipes which have the same figure and roughness with a real system.

  • PDF

Development of BLDC Motor Driven Cryogenic Thrust Control Valve for Liquid Propellant Rocket Engine (BLDC 모터로 구동되는 액체 추진제 로켓엔진용 극저온 추력제어밸브 개발)

  • Jung, Tae-Kyu;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1026-1030
    • /
    • 2010
  • This paper summarizes the activities performed for the development of a BLDC(Brushless Direct Current) motor driven cryogenic thrust control valve with application to KSLV-II rocket engine. The developed thrust control valve can modulate the flow rate of liquid oxygen under cryogenic temperature of 90K and high pressure of 113.2 bar with the help of electro-mechanical actuator driven by a BLDC motor. This valve can be applied to an engine combustion test after minor change because all development certification test have been performed successfully.

Development of Linear Control Valve for Oxidizer Flow Rate Control (산화제 유량제어를 위한 선형제어밸브 개발)

  • Lee, Seunghwan;Kim, Heuijoo;Kim, Gyeongmin;Kim, Jiman;Kim, Dongsik;Hwang, Heeseong;Yoo, Yeongjun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.139-141
    • /
    • 2017
  • By modulating the flow rate of $N_2O$ into a HR motor assembly, a control valve of a hybrid rocket engine plays a role to increase or decrease the thrust. In this study, the control valve has been designed to meet the requirements which are response speed(${\leq}$ about 1 second) and torque(${\geq}$ about $36N{\cdot}m$). Then, when analog signal 0~10V is applied, the situation where the valve is opened and closed has to be realized. To do this, the data values have to be entered into the actuator. Finally, the performance evaluation of the control valve has been performed to validate this product.

  • PDF

Development of a Two-Step Main Oxidizer Shut-off Valve (2단계 개방 연소기 산화제 개폐밸브 개발)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.704-710
    • /
    • 2017
  • The supply of the liquid oxygen into a rocket combustor is simply controlled by the 'on' and 'off' positions of a main oxidizer shut-off valve. However, the partially opened position of a three-position valve can control and optimize the engine start transients by regulating the liquid oxygen flow rate during the start-up of the engine. In this paper, the design and performances of a three-position pneumatic poppet valve, which is intended to be employed in liquid rocket engines, have been presented.

Model-based Design and Performance Analysis of Main Control Valve of Flap Control System (플랩제어시스템 주제어밸브의 모델기반 설계 및 성능해석)

  • Cho, Hyunjun;Ahn, Manjin;Joo, Choonshik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.50-59
    • /
    • 2019
  • The design of the main control valve, which is the main component of the flap control system, was based on actual manufacturing experience on the basis of trial and error method. In this paper, a model-based part design method is proosed. The flap control system consists of a main control valve, fail-safe valve, solenoid valve, LVDT and force motor. The main control valve consists mainly of a spool and slot. The important design parameters of the main control valve are the slot width, overlap and clearance. AMESim is linked to the model and it analyzes the flow path of the main control valve. Applying the proposed design procedure, it was confirmed that the required performance was satisfied within the allowable machining error range.