• Title/Summary/Keyword: 밴드센서

Search Result 239, Processing Time 0.025 seconds

Aircraft Velocity and Altitude Estimation through Time Offset Calculation of KOMPSAT-3 Satellite (KOMPSAT-3 위성의 Time Offset 계산을 통한 항공기 속력 및 고도 추정)

  • Jung, Sejung;Shin, Hyeongil;Kim, Dohoon;Song, Ahram;Lee, Won Hee
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1879-1887
    • /
    • 2022
  • In this study, a method of estimating the velocity and altitude of aircrafts photographed in a KOMPSAT-3 satellite was proposed. In the proposed method, parallax effect, which is a time offset between bands due to the photographing method of the KOMPSAT-3 satellite, the structure of the sensor, and the movement of the satellite's orbit, was calculated, and in this process, trucks running on the highway were used. In addition, the actual direction and the direction by parallax effect of the aircraft were calculated using the coordinates of the aircraft in the image, and the attitude information of the KOMPSAT-3 satellite was calculated using metadata to estimate the velocity and altitude of the aircraft. The estimated value through the proposed method was compared with the actual value, automatic dependent surveillance-broadcast (ADS-B), and the error rate was calculated here. As a result, it was confirmed that the velocity and altitude error rate of large aircraft (I1, I3, S2) were lower than that of light aircraft (I2, S2), and the estimated velocity and altitude were relatively high in large aircraft using the proposed method.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

Development of Suspended Sediment Concentration Measurement Technique Based on Hyperspectral Imagery with Optical Variability (분광 다양성을 고려한 초분광 영상 기반 부유사 농도 계측 기법 개발)

  • Kwon, Siyoon;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.116-116
    • /
    • 2021
  • 자연 하천에서의 부유사 농도 계측은 주로 재래식 채집방식을 활용한 직접계측 방식에 의존하여 비용과 시간이 많이 소요되며 점 계측 방식으로 고해상도의 시공간 자료를 측정하기엔 한계가 존재한다. 이러한 한계점을 극복하기 위해 최근 위성영상과 드론을 활용하여 촬영된 다분광 혹은 초분광 영상을 통해 고해상도의 부유사 농도 시공간분포를 측정하는 기법에 대한 연구가 활발히 진행되고 있다. 하지만, 다른 하천 물리량 계측에 비해 부유사 계측 연구는 하천에 따라 부유사가 비균질적으로 분포하여 원격탐사를 통해 정확하고 전역적인 농도 분포를 재현하기는 어려운 실정이다. 이러한 부유사의 비균질성은 부유사의 입도분포, 광물특성, 침강성 등이 하천에서 다양하게 분포하기 때문이며 이로 인해 부유사는 지역별로 다양한 분광특성을 가지게 된다. 따라서, 본 연구에서는 이러한 영향을 고려한 전역적인 부유사 농도 예측 모형을 개발하기 위해 실내 실험을 통해 부유사 특성별 고유 분광 라이브러리를 구축하고 실규모 수로에서 다양한 부유사 조건에 대한 초분광 스펙트럼과 부유사 농도를 측정하는 실험을 수행하였다. 실제 부유사 농도는 광학 기반 센서인 LISST-200X와 샘플링을 통한 실험실 분석을 통해 계측되었으며, 초분광 스펙트럼 자료는 초분광 카메라를 통해 촬영한 영상에서 부유사 계측 지점에 대한 픽셀의 스펙트럼을 추출하여 구축하였다. 이렇게 생성된 자료들의 분광 다양성을 주성분 분석(Principle Component Analysis; PCA)를 통해 분석하였으며, 부유사의 입도 분포, 부유사 종류, 수온 등과의 상관관계를 통해 분광 특성과 가장 상관관계가 높은 물리적 인자를 규명하였다. 더불어 구축된 자료를 바탕으로 기계학습 기반 주요 특징 선택 알고리즘인 재귀적 특징 제거법 (Recursive Feature Elimination)과 기계학습기반 회귀 모형인 Support Vector Regression을 결합하여 초분광 영상 기반 부유사 농도 예측 모형을 개발하였으며, 이 결과를 원격탐사 계측 연구에서 일반적으로 사용되어 오던 최적 밴드비 분석 (Optimal Band Ratio Analysis; OBRA) 방법으로 도출된 회귀식과 비교하였다. 그 결과, 기존의 OBRA 기반 방법은 비선형성을 증가시켜도 좁은 영역의 파장대만을 고려하는 한계점으로 인해 부유사의 다양한 분광 특성을 반영하지 못하였으며, 본 연구에서 제시한 기계학습 기반 예측 모형은 420 nm~1000 nm에 걸쳐 폭 넓은 파장대를 고려함과 동시에 높은 정확도를 산출하였다. 최종적으로 개발된 모형을 적용해 다양한 유사 조건에 대한 부유사 시공간 분포를 매핑한 결과, 시공간적으로 고해상도의 부유사 농도 분포를 산출하는 것으로 밝혀졌다.

  • PDF

A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m Data (한반도 식생에 대한 MODIS 250m 자료의 BRDF 효과에 대한 반사도 정규화)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.445-456
    • /
    • 2005
  • The land surface parameters should be determined with sufficient accuracy, because these play an important role in climate change near the ground. As the surface reflectance presents strong anisotropy, off-nadir viewing results a strong dependency of observations on the Sun - target - sensor geometry. They contribute to the random noise which is produced by surface angular effects. The principal objective of the study is to provide a database of accurate surface reflectance eliminated the angular effects from MODIS 250m reflective channel data over Korea. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor has provided visible and near infrared channel reflectance at 250m resolution on a daily basis. The successive analytic processing steps were firstly performed on a per-pixel basis to remove cloudy pixels. And for the geometric distortion, the correction process were performed by the nearest neighbor resampling using 2nd-order polynomial obtained from the geolocation information of MODIS Data set. In order to correct the surface anisotropy effects, this paper attempted the semiempirical kernel-driven Bi- directional Reflectance Distribution Function(BRDF) model. The algorithm yields an inversion of the kernel-driven model to the angular components, such as viewing zenith angle, solar zenith angle, viewing azimuth angle, solar azimuth angle from reflectance observed by satellite. First we consider sets of the model observations comprised with a 31-day period to perform the BRDF model. In the next step, Nadir view reflectance normalization is carried out through the modification of the angular components, separated by BRDF model for each spectral band and each pixel. Modeled reflectance values show a good agreement with measured reflectance values and their RMSE(Root Mean Square Error) was totally about 0.01(maximum=0.03). Finally, we provide a normalized surface reflectance database consisted of 36 images for 2001 over Korea.

Derivation of Green Coverage Ratio Based on Deep Learning Using MAV and UAV Aerial Images (유·무인 항공영상을 이용한 심층학습 기반 녹피율 산정)

  • Han, Seungyeon;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1757-1766
    • /
    • 2021
  • The green coverage ratio is the ratio of the land area to green coverage area, and it is used as a practical urban greening index. The green coverage ratio is calculated based on the land cover map, but low spatial resolution and inconsistent production cycle of land cover map make it difficult to calculate the correct green coverage area and analyze the precise green coverage. Therefore, this study proposes a new method to calculate green coverage area using aerial images and deep neural networks. Green coverage ratio can be quickly calculated using manned aerial images acquired by local governments, but precise analysis is difficult because components of image such as acquisition date, resolution, and sensors cannot be selected and modified. This limitation can be supplemented by using an unmanned aerial vehicle that can mount various sensors and acquire high-resolution images due to low-altitude flight. In this study, we proposed a method to calculate green coverage ratio from manned or unmanned aerial images, and experimentally verified the proposed method. Aerial images enable precise analysis by high resolution and relatively constant cycles, and deep learning can automatically detect green coverage area in aerial images. Local governments acquire manned aerial images for various purposes every year and we can utilize them to calculate green coverage ratio quickly. However, acquired manned aerial images may be difficult to accurately analyze because details such as acquisition date, resolution, and sensors cannot be selected. These limitations can be supplemented by using unmanned aerial vehicles that can mount various sensors and acquire high-resolution images due to low-altitude flight. Accordingly, the green coverage ratio was calculated from the two aerial images, and as a result, it could be calculated with high accuracy from all green types. However, the green coverage ratio calculated from manned aerial images had limitations in complex environments. The unmanned aerial images used to compensate for this were able to calculate a high accuracy of green coverage ratio even in complex environments, and more precise green area detection was possible through additional band images. In the future, it is expected that the rust rate can be calculated effectively by using the newly acquired unmanned aerial imagery supplementary to the existing manned aerial imagery.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

정지궤도 통신해양기상위성의 기상분야 요구사항에 관하여

  • Ahn, Myung-Hwan;Kim, Kum-Lan
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.20-42
    • /
    • 2002
  • Based on the "Mid to Long Term Plan for Space Development", a project to launch COMeS (Communication, Oceanography, and Meteorological Satellite) into the geostationary orbit is undergoing. Accordingly, KMA (Korea Meteorological Administration) has defined the meteorological missions and prepared the user requirements to fulfill the missions. To make a realistic user requirements, we prepared a first draft based on the ideal meteorological products derivable from a geostationary platform and sent the RFI (request for information) to the sensor manufacturers. Based on the responses to the RFI and other considerations, we revised the user requirement to be a realistic plan for the 2008 launch of the satellite. This manuscript introduces the revised user requirements briefly. The major mission defined in the revised user requirement is the augmentation of the detection and prediction ability of the severe weather phenomena, especially around the Korean Peninsula. The required payload is an enhanced Imager, which includes the major observation channels of the current geostationary sounder. To derive the required meteorological products from the Imager, at least 12 channels are required with the optimum of 16 channels. The minimum 12 channels are 6 wavelength bands used for current geostationary satellite, and additional channels in two visible bands, a near infrared band, two water vapor bands and one ozone absorption band. From these enhanced channel observation, we are going to derive and utilize the information of water vapor, stability index, wind field, and analysis of special weather phenomena such as the yellow sand event in addition to the standard derived products from the current geostationary Imager data. For a better temporal coverage, the Imager is required to acquire the full disk data within 15 minutes and to have the rapid scan mode for the limited area coverage. The required thresholds of spatial resolutions are 1 km and 2 km for visible and infrared channels, respectively, while the target resolutions are 0.5 km and 1 km.

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.