• Title/Summary/Keyword: 백합나무

Search Result 92, Processing Time 0.022 seconds

Development of Kiln-Dry Schedules for Pinus $rigida{\times}taeda$ and Liriodendron tulipifera (리기테다소나무와 백합나무(yellow poplar)의 열기건조스케줄 개발)

  • 이관영;강호양;정성호;정두진
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.69-74
    • /
    • 2000
  • Pinus $rigida{\times}taeda$ and Liriodendron tulipifira have been planted in this country for about 20 years. They are known as a relatively 13st-grown and useful species. The physical properties such as green moisture contents, specific gravities and dimensional shrinkages were examined with natively grown timbers. The kiln-dry schedules were developed with 30m thick boards by using an oven-fast-drying method. In both species the green MC's of sapwoods were higher than those of heartwoods, but their discrepancies were small. The green specific gravities of Pinus $rigida{\times}taeda$ and Liriodendron tulipifera were 0.48 and 0.41~O.42, respectively. The developed kiln-dry schedules were proven to minimize drying defects for the hoards of 30mm thickness and various width.

  • PDF

Radial Variation of Sound Absorption Capability in the Cross Sectional Surface of Yellow Poplar Wood (백합나무 횡단면 흡음성능의 방사방향 변이)

  • Kang, Chun-Won;Lee, Youn-Hun;Kang, Ho-Yang;Kang, Wook;Xu, Huiran;Chung, Woo-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Radial variation of sound absorption capability and air permeability of yellow poplar (Liriodendron tulipifera) wood in cross sectional surface and effect of steam explosion treatment were estimated by the two microphone transfer function method and the capillary flow porometry, respectively. The sound absorption coefficients of steam explosion treated wood was higher than those of control wood and these values increased with frequency. Abundant and big vessel may behave as sound absorbing pore observed on the cross sectional surface of yellow poplar wood. The sound absorption coefficients and air permeability of sapwood were higher than those of heartwood for Liriodendron tulipifera.

Potential of Torrified Tulip-tree for the Production of Solid Bio-fuels (백합나무의 반탄화 처리를 이용한 고체연료화 가능성 조사)

  • Ahn, Byoung Jun;Yang, In;Kim, Sang Tae;Park, Daehak
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.40-50
    • /
    • 2013
  • This study was performed to investigate the potential of torrefied tulip tree (TT) for the production of pellets. For this purpose, chemical composition and fuel characteristics of torrefied TT were examined. In addition, pellets were fabricated by using sawdust of torrefied TT chip, and durability of the pellet was measured. Lignin content of torrefied TT was higher than that of non-torrefied TT, and increased with the increases of torrefaction temperature and time. Fuel characteristics of torrefied TT were affected by torrefied conditions, and the characteristics were influenced more by torrefaction temperature than by torrefaction time. Higher heating value (HHV) and ash content (AC) of torrefied tulip tree increased with increasing torrefaction temperature, and the values were much higher than HHV and AC values of non-torrefied TT. Durability of pellets fabricated with $230^{\circ}C$- and $250^{\circ}C$-torrefied TT was higher than that of $270^{\circ}C$-torrefied TT, and the value exceeded the minimum requirement (-97.50%) of the 1st-grade pellet standard designated by Korea Forest Research Institute. Based on the results, torrefaction treatment of $250^{\circ}C/50min$ to TT might be a optimal condition for the production of TT pellets considering the mass balance and fuel characteristics of TT as well as the durability of the pellets. Thus, it is confirmed that torrefied TT can be used as a raw material for the production of bio-pellets.

Mass Propagation of Liriodendron tulipifera L. via Somatic Embryogenesis (체세포 배발생을 통한 백합나무 [Liriodendron tulipifera L.]의 대량증식)

  • Lee, Jae-Soon;Moon, Heung-Kyu;Kim, Yong-Wook
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.359-363
    • /
    • 2003
  • Mass propagation of tulip tree (Liriodendron tulipifera L) via somatic embryogenesis was successfully achieved with immature samaras collected from adult trees. Embryogenic tissues were induced by culturing them samaras on 1/2 LM medium (Litvay's) containing 2,4-D and BA. Somatic embryos developed from the embryogenic tissues and germinated to normal plants (emblings) upon transfer onto the same medium containing either AgNO$_3$ or activated charcoal. So far, several factors appeared to influence both the induction of embryogenic tissues and germination of the embryos into plants. These include the collection time of samaras for the induction of embryogenic tissue, sucrose level in the culture medium, the level of both AgNO$_3$ and activated charcoal, and plating density of somatic embryos on germination medium for maturation and germination of somatic embryos into plantlets.

Growth Performance and Photosynthesis of Two Deciduous Hardwood Species under Different Irrigation Period Treatments in a Container Nursery System (시설양묘과정에서 관수 주기 처리에 따른 두 활엽수종의 생장 및 광합성 기구 변화)

  • Cho, Min-Seok;Lee, Soo-Won;Hwang, Jae-Hong;Kim, Jae-Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.28-38
    • /
    • 2012
  • This study was conducted to investigate growth performance, photosynthesis, water use efficiency (WUE), and stomatal conductance ($g_s$) of container seedlings of Liriodendron tulipifera and Zelkova serrata growing under three different irrigation periods (1 time/1 day, 1 time/2 days and 1 time/3 days) for high seedling quality. The root collar diameter and height of L. tulipifera and Z. serrata seedlings were highest with 1 time/1 day irrigation, whereas they were lowest with 1 time/3 days irrigation. The two species showed low drought tolerance. As irrigation period was shortened, biomass and seedling quality index (SQI) of the two species increased. The ratio of height to root collar diameter (H/D) and the ratio of below to aboveground biomass (T/R) of the two species were lower with 1 time/3 days than at other irrigation periods. L. tulipifera and Z. serrata seedlings showed significantly higher photosynthetic capacity with 1 time/1 day irrigation. As irrigation period was shortened, $g_s$ of two species increased, while their WUE decreased significantly (P<0.05) These results show that 1 time/1 day irrigation provides the most optimal water condition for container seedling production of two species and irrigation controlling is very important for growth and quality of container seedlings.

Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis (촉매열분해를 이용한 백합나무 바이오오일의 연료 특성)

  • Chea, Kwang-Seok;Jeong, Han-Seob;Ahn, Byoung-Jun;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil products. In this study, catalytic pyrolysis was applied to upgrade bio-oil from yellow poplar and then fuel characteristics of upgraded bio-oil was investigated. Yellow Poplar(500 g) which ground 0.3~1.4 mm was processed into bio-oil by catalytic pyrolysis for 1.64 seconds at $465^{\circ}C$ with Control, Blaccoal, Whitecoal, ZeoliteY and ZSM-5. Under the catalyst conditions, bio-oil productions decreased from 54.0%(Control) to 51.4 ~ 53.5%, except 56.2%(Blackcoal). HHV(High heating value) of upgraded bio-oil was more lower than crude bio-oil while the water content increased from 37.4% to 37.4 ~ 45.2%. But the other properties were improved significantly. Under the upgrading conditions, ash and TAN(Total Acid Number) is decrease and particularly important as transportation fuel, the viscosity of bio-oil decreased from 6,933 cP(Control) to 2,578 ~ 4,627 cP. In addition, ZeoliteY was most effective on producing aromatic hydrocarbons and decreasing of from the catalytic pyrolysis.

Quality of Yellow Poplar (Liriodendron tulipifera) Seedlings by the Method of Seedling Production (백합나무 양묘방법에 따른 묘목품질 비교)

  • Ryu, Keun-Ok;Song, Jeong-Ho;Choi, Hyung-Soon;Kwon, Hae-Yun;Kwon, Yong-Rak
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.307-316
    • /
    • 2007
  • Yellow poplar (Liriodendron tulipifera L.) has low germination rate relatively other species, so the seedling production of Yellow poplar is a hard task. Accordingly this study was conducted to determine the optimal germination conditions for healthy seedling production and to promote survival rate after afforestation. Gemination percentage was examined at different media and seed covering materials using planting flats in the greenhouse. The best germination percentage was observed in sand for media and compound soil for covering materials. But it was time to transplant, seedlings became a poor character (i.e. height, root length, number of root, dry weight) in sand for media. In order to produce healthy seedlings, each different medium was compounded with TKS-2 (this is a gardening bed soil.) in the ratio 1:1 (v/v.), and compared two conditions. Quality of seedling was better than not mixed TKS-2 into each medium. Transplanting seedlings from greenhouse to nursery grew up rapidly 2 months later (early in August~early in October). Growth amount during two months corresponded to 85.6% and 71.3% in total growth amount of height and diameter at root collar, respectively. In the case of the competition-density effect on yellow-poplar seedlings, direct seedling produced the maximum 35 standard seedlings above 8 mm of root collar diameter per $m^2$, while transplanting seedling produced the maximum 64 standard seedlings per $m^2$. And produced seedlings of two way were significantly different rootlet while axial root and lateral root was not significantly different.

Effects of Simulated Acid Rain on Above- and Below-Ground Growth of Liliodendron tulipifera L. Seedlings (인공산성비 처리가 백합나무 묘목의 지상부 및 지하부 생장에 미치는 영향)

  • Yoon, Jun-Hyuck;Lee, Do-Hyung;Woo, Kwan-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.3
    • /
    • pp.204-214
    • /
    • 2008
  • This study was conducted to analyze the influence of simulated acid rain on growth of Liliodendron tulipifera seedlings. The seedlings were treated with four levels of simulated acid rain, 5.6, 4.9, 3.9, or 2.9, and dry weight, growth of stem and root were investigated. There were statistically significant differences at 1% and 5% in the total dry weight of the above-part among the simulated acid rain treated groups with different levels of pH and different types of soil. The dry weight of the above part tended to decrease as the acidity of the simulated acid rain increases. The total dry weight of the below-part was significantly different according to the levels of acidity of the acid rain in all three soils and was shown a significant difference according to the soil types at only pH 2.9 plot. The dry weight of the below part in soils A and C decreased as the pH level decreases. The rate of stem growth was significantly different among the treatment groups of acidity of the acid rain at significance level of 0.01 and among the treatment groups of soil types at 0.01 and 0.05 levels from June to August. In all three soil types, the greatest stem growth occurred during the period of June. Moreover, stem growth was promoted at pH 3.9 plot and pH 4.9 plot whereas it was suppressed at pH 2.9 plot. Though the amount of fine roots and very fine roots in soil depth of 0-7 cm and 7-14 cm were significantly different among the treatment groups of pH level, fine root was not shown a significant difference among the pH groups in soil depth of 14-21cm. The types of soil significantly affected only on the amount of the very fine root.