• Title/Summary/Keyword: 백신 수용도

Search Result 14, Processing Time 0.017 seconds

Understanding COVID-19 Vaccine Acceptance Intention: An Emotion-focused and Problem-focused Coping Perspective (코로나-19 백신 수용의도에 관한 연구: 정서 중심적 대처와 문제 중심적 대처 관점을 중심으로)

  • Yoo, Joon Woo;Park, Heejun
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.643-662
    • /
    • 2023
  • Purpose: The purpose of this study was to understand an individuals' COVID-19 vaccine acceptance intention during the peak of the pandemic by utilizing the coping theory and technology threat avoidance theory (TTAT) as a framework. Specifically, we focused on understanding how inward and outward emotion-focused coping (EFC), such as psychological distancing and emotional support seeking, affect problem-focused behavior (PFC), which is vaccine acceptance. Furthermore, we investigate how the individuals' cognitive appraisal to- ward COVID-19, consisted of perceived threat and perceived avoidability act as an antecedent of EFC. Methods: A PLS-SEM analysis was conducted to find the causal relation between the variables. An online survey was conducted targeting vaccination recipients on April, 2021. Participants were asked about their perception toward the virus, their coping strategy, and vaccine acceptance intention. A total of 186 valid samples were collected and used for the analysis. Furthermore, to analyze the out-of-sample predictive power of the research model and ensure the generalizability of the results, a PLSpredict analysis was conducted. Results: The results of the PLS-SEM analysis show that perceived threat toward COVID-19 significantly affect an individuals' EFC strategy. Furthermore, both types of inward EFC (psychological distancing, wishful thinking) negatively affected vaccine acceptance intention. On the other hand, emotional support seeking, which is a type of outward EFC, positively affected vaccine acceptance. The result of the PLSpredict analysis confirms the generalizability of the PLS-SEM result. Conclusion: The results of our study could be utilized to decrease vaccine hesitancy and prevent global pandemics by accelerating and increasing vaccination. Our study provides several meaningful implications to researchers and practitioners regarding vaccine acceptance and threat coping behavior.

Construction of FMDV VP1 Gene Using Artificial DNA Synthesis and Transformation of Nicotiana tabacum Using Agrobacterium Vector System (유전자 인공합성을 이용한 구제역 유전자 VP1의 제작과 Agrobacterium Vector System을 이용한 담배 형질전환)

  • Lee, Eun-Jung;Lim, Hee-Young;Kim, Sung-Hoon;Kang, Kyung-Sun;Park, Young-Doo;Yun, Choong-Hyo;Yoon, Byoung-Su
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.285-293
    • /
    • 2004
  • FMDV is a viral pathogen that caused foot-and-mouth disease in animals. VP1 is a major capsid protein of FMDV. It is known as one of best materials for the FMDV diagnosis and for the development of protein vaccine. In this study, 633 bp of VP1 gene was modified for the expression of VP1 in plant, based on the VP1 DNA sequence from FMDV taiwan O type and from FMDV isolated vietnam. The. deduced DNA fragment was artificially synthesized using the multiple fragment extension with long-nucleotides. A new plant transgenic vector system, pCAMBIA139011 was constructed on the basis of pBI12l and pCAMBIA1390. Using this vector system and GFP gene or modified VP1 gene, each target gene was introduced into Nicotiana tabacum. The insertion of whole target gene was successfully confirmed in each transgenic plant named GFP-A7 and VP1-4, respectively. The expression level of each gene was estimated by RT-PCR and Real-Time PCR using VP1, GFP specific primers.

Identification and Characterization of Secreted Phosphoprotein 2 as a Novel Bioactive Protein for Myocardial Differentiation (심근세포로의 분화에 관여하는 새로운 생리활성 단백질 SPP2의 발굴)

  • Sejin Jeon
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.64-72
    • /
    • 2023
  • Despite several advances in identification of cardiac transcription factors, there are still needs to find new bioactive molecules that promote cardiomyogenesis from stem cells to highly efficient myocardial differentiation. We analyzed Illumina expression microarray data of mouse embryonic stem cells (mESCs)-derived cardiomyocytes. 276 genes were upregulated (≥ 4fold) in mESCs-derived cardiomyocytes compared undifferentiated ESCs. Secreted phosphoprotein 2 (Spp2) is one of candidates and is known to inhibit bone morphogenetic protein 2 (BMP2) signal transduction as a pseudoreceptor for BMP2. However, its function in cardiomyogenesis is unknown. We confirmed that Spp2 expression increased during the differentiation into functional cardiomyocytes using mESCs, TC-1/Kh2 and E14. Interestingly, Spp2 secretion transiently increased 3 days after formation of embryoid bodies (EBs), indicating that the extracellular secretion of Spp2 is involved in the differentiation of ESCs into cardiomyocytes. To characterize Spp2, we performed experiments using the C2C12 mouse myoblast cell line, which has the property of shifting the differentiation pathway from myoblastic to osteoblastic by treatment with BMP2. Similar to the differentiation of ESCs, transcription of Spp2 increased as C2C12 myoblasts differentiated into myotubes. In particular, Spp2 secretion increased dramatically in the early stage of differentiation. Furthermore, treatment with Spp2-Flag recombinant protein promoted the differentiation of C2C12 myoblasts into myotubes. Taken together, we suggest a novel bioactive protein Spp2 that differentiates ESCs into cardiomyocytes. This may be useful for understanding the molecular pathways of cardiomyogenesis and for experimental or clinical promotion of stem cell therapy for ischemic heart diseases.

Multiple Monoclonal Antibodies Produced in a Single Transgenic Plant (형질전환 식물체에서의 복합 단일 항체 단백질 생산)

  • Ahn, Mi-Hyun;Oh, Eun-Yi;Song, Mi-Ra;Lu, Zhe;Kim, Hyun-Soon;Joung, Hyouk;Ko, Ki-Sung
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.123-128
    • /
    • 2009
  • Production of highly valuable immunotherapeutic proteins such as monoclonal antibodies and vaccines using plant biotechnology and genetic engineering has been studied as a popular research field. Plant expression system for mass production of such useful recombinant therapeutic proteins has several advantages over other existing expression systems with economical and safety issues. Immunotherapy of multiple monoclonal antibodies, which can recognize multiple targeting including specific proteins and their glycans highly expressed on the surface of cancer cells, can be an efficient treatment compared to a single targeting immunotherapy using a single antibody. In this study, we have established plant production system to express two different targeting monoclonal antibodies in a single transgenic plant through crossing fertilization between two different transgenic plants expressing anti-colorectal cancer mAbCO17-1A and anti-breast cancer mAbBR55, respectively. The F1 seedlings were obtained cross fertilization between the two transgenic parental plants. The presence, transcription, and protein expression of heavy chain (HC) and light chain (LC) genes of both mAbs in the seedlings were investigated by PCR, RT-PCR, and immunoblot analyses, respectively. Among all the seedlings, some seedlings did not carry or transcribe the HC and LC genes of both mAbs. Thus, the seedlings with presence and transcription of HC and LC genes of both mAbs were selected, and the selected seedlings were confirmed to have relatively stronger density of HC and LC protein bands compared to the transgenic plant expressing only each mAb. These results indicate that the F1 seedling plant with carrying both mAb genes was established. Taken together, plant crossing fertilization can be applied to generate an efficient production system expressing multiple monoclonal antibodies for immunotherapy in a single plant.