• Title/Summary/Keyword: 백록담

Search Result 26, Processing Time 0.025 seconds

Petrology of the Volcanic Rocks in the Paekrogdam Crater area, Mt. Halla, Jeju Island (제주도 한라산 백록담 분화구 일대 화산암류의 암석학적 연구)

  • 고정선;윤성효;강순석
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2003
  • The Paekrogdam summit crater area, Mt. Halla, Jeju Island, Korea, composed of Paekrogdam trachyte, Paekrogdam trachybasalt, and Manseidongsan conglomerate in ascending order. Joint systems show concentric and radial patterns around the summit crate wall. The Paekrogdam crater is a summit crater lake which erupted the tuffs, scorias and lava flows of Paekrogdam trachybasalt after the emplaceent of Paekrogdam trachyte dome. SiO$_2$ contents of mafic and felsic lavas are respectively, 48.0∼53.7 wt.% and 60.7∼67.4 wt.%, reflecting bimodal volcanism. And lavas with SiO$_2$ between 53.7 wt.% and 60.7 wt.% are not found. According to TAS diagram and K$_2$O-Na$_2$O diagram, the volcanic rocks belong to the normal alkaline rock series of alkali basalt-trachybasalt-basaltic trachyandesite and trachyte association. Oxide vs. MgO diagrams represent that the mafic lavas fractionated with crystallization of olivine, clinopyroxene, magnetite and ilmenite and felsic trachyte of plagioclase and apatite. The characteristics of trace elements and REEs shows that primary magma for the trachybasalt magma would have been derived from partial melting of garnet peridotite mantle. In the discrimination diagrams, the volcanic rocks are plotted at the region of within plate basalt (WPB).

Volcanological History of the Baengnokdam Summit Crater Area, Mt. Halla in Jeju Island, Korea (제주도 한라산 백록담 일대의 화산활동사)

  • Ahn, Ung San;Hong, Sei Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.221-234
    • /
    • 2017
  • The Baengnokdam, the summit crater of Mt. Halla, is one of the representative geosites of World Natural Heritage and Global Geopark in Jeju Island. The crater is marked by two distinctive volcanic lithofacies that comprise: 1) a trachytic lava dome to the west of the crater and 2) trachybasaltic lava flow units covering the gentle eastern slope of the mountain. This study focuses on understanding the formative process of this peculiar volcanic lithofacies association at the summit of Mt. Halla through field observation and optically stimulated luminescence (OSL) dating of the sediments underlying the craterforming volcanics. The trachyte dome to the west of the crater is subdivided into 3 facies units that include: 1) the trachyte breccias originating from initial dome collapse, 2) the trachyte lava-flow unit and 3) the domal main body. On the other side, the trachybasalt is subdivided into 2 facies units that include: 1) the spatter and scoria deposit from the early explosive eruption and 2) lava-flow unit from the later effusion eruption. Quartz OSL dating on the sediments underlying the trachyte breccias and the trachybasaltic lava-flow unit reveals ages of ca. 37 ka and ca. 21 ka, respectively. The results point toward that the Baengnokdam summit crater was formed by eruption of trachybasaltic magma at about 19~21 ka after the trachyte dome formed later than 37 ka.

A Study of Weathering Characteristic of Baeknokdam Trachyte in Jeju Island (제주도 한라산조면암의 풍화특성에 관한 연구)

  • Lee, Chang-Sup;Cho, Tae-Chin;Lee, Sang-Bae;Won, Kyung-Sik
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.235-251
    • /
    • 2007
  • Baeknokdam rock mass at the crest of Halla mountain is composed of Baeknokdam trachybasalt in the eastern region and Hallasan trachyte in the western region. On-going weathering, rockfall and collapse of Baeknokdam wall rock are closely linked to the weathering of trachyte distributed in the western region of Baeknokdam, though within the restricted area of eastern region trachybasalt blocks has been naturally formed and may be rolled down neering properties have been conducted. Based on the results of these experiments variations of mineralogical-petrographical characteristics of trachyte together with chemical and physical properties with respect to the degree of weathering have been analyzed. Weathering mechanism of Baeknokdam trachyte has been delineated by investigating the environmental cause of weathering and the peculiar features of weathered rock mass.

The Vegetation and Plant Resources of Paeknokdam, the Crater of Mt. Halla (한라산 백록담 분화구내의 식생과 식물자원)

  • 고정군;문명옥;고석찬
    • Korean Journal of Plant Resources
    • /
    • v.12 no.3
    • /
    • pp.221-233
    • /
    • 1999
  • The vegetation and plant resources of Paeaknokdam, the crater of Mt. Halla, was investigated from 1996 to 1998. The vegetation was classified into Diapensia lapponica var. obovata-Tofieldia fauriel association and Festuca ovina-Carex erythrobasis association. The latter was divided into Rhododendron mucronulatum var. ciliatum-Empetrum nigrum var. japonicum subassociation, which was composed partly of Abies koreana-Betula ermani var. saitoana variant. The plant resources of 162 taxa were composed of 49 families, 122 genera, 127 species, 2 subspecies, 30 varieties and 3 formae, of which 63 taxa were newly found in this area. Among the investigated plants, 27 taxa were endemic to Korea or Cheju islands, 39 taxa were rare or endangered, and 65 taxa were identified as alpine plants. One hundred and twenty-one taxa(75.6%) were identified to be useful: 82 for ornament, 75 for medice, 66 for food, 17 for nectar-producing, 15 for pasture, and 10 for industry.

  • PDF

Impact of Baekrokdam precipitation observation data on improving groundwater level prediction in mid-mountainous region of Jeju Island (백록담 강수량 관측자료가 제주도 중산간지역 지하수위 예측 향상에 미치는 영향)

  • Shin, Mun-Ju;Kim, Jeong-Hun;Kang, Su-Yeon;Moon, Soo-Hyoung;Hyun, Eun Hee
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.10
    • /
    • pp.673-686
    • /
    • 2024
  • Groundwater is an important water resource used for various purposes along with surface water. Jeju Island relies on groundwater for most of its water use, so predicting and managing groundwater volume is very important for sustainable use of groundwater. In this study, precipitation data from the Baekrokdam Climate Change Observatory was additionally used to accurately predict groundwater levels. We compared and analyzed the improvement in monthly groundwater level prediction performance of the ANN and LSTM models for two observation wells located in the mid-mountainous area of the Pyoseon watershed in Jeju Island. As a result, when Baekrokdam precipitation data was not used, the NSE values of the two artificial intelligence models were over 0.871, showing very high groundwater level prediction performance. The LSTM model showed relatively higher prediction performance at high and low groundwater levels than the ANN model. We found that the prediction performance decreases as the variation characteristics of the groundwater level become more complex. When Baekrokdam precipitation data was additionally used, the NSE values of the two artificial intelligence models were above 0.907, indicating improved prediction performance, and the NSE value was improved by up to 0.036. This means that when additional rainfall in the upstream area is used, the artificial intelligence model can more appropriately interpret the fluctuating characteristics of the groundwater level. In addition, the additional use of Baekrokdam precipitation data further helped improve groundwater level prediction for observation well, where groundwater level prediction is relatively difficult, and artificial intelligence models, which have relatively low groundwater level prediction performance. In particular, when Baekrokdam precipitation data was additionally used for a specific observation well, the groundwater level prediction performance of the ANN model was improved to a level comparable to that of the LSTM model. The methods and results of this study can be useful in future research using artificial intelligence models.

Flowering Season and Flower Color of the Alpine Plants in Paeknokdam, the Crater of Mt. Halla (한라산 고산식물의 개화시기 및 화색에 관한 연구)

  • 오순자;고정군;고석찬
    • Korean Journal of Plant Resources
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Life form, flower color, flowering and seed-ripening seasons of 59 alpine plants in Paeknokdam, the crater of Mt. Halla, were investigated in order to obtain the information about ornamental potentials of alpine plants. Life form spectrum of alpine plants are characterized by a high percentage of hemicryptophytes (67.8%). This result was similar to those of other alpine plant communities. Flowering season of alpine plants was July to August and seed-ripening season was August to September. Flower color of these alpine plants was dominated by white (27%), blue (22%) and yellow (20.3%).

  • PDF