• Title/Summary/Keyword: 백금-탄소

Search Result 88, Processing Time 0.038 seconds

The characteristics of dye-sensitized solar cells using carbon nanotube in working and counter electrodes (작업전극과 상대전극에 탄소나노튜브를 이용한 염료감응 태양전지의 특성연구)

  • Kim, Bora;Song, Suil;Lee, Hak Soo;Cho, Namjun
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2014
  • The effect of electrochemical characteristics of dye-sensitized solar cells (DSSC) upon employing multi-wall carbon nanotube (MWCNT) on both working electrode and counter electrode were examined with using EIS, J-V curves and UV-Vis absorption spectrometry. When 0.1 wt% of MWCNT was employed in the $TiO_2$-MWCNT composit on working electrode, the energy conversion efficiency increased about 12.5% compared to the $TiO_2$ only working electrode. The higher light conversion efficiency may attribut to the high electrical conductivity of MWCNT in $TiO_2$-MWCNT composite which improves the electron transport in the working electrode. However, higher amount of MWCNT than 0.1 wt% in the $TiO_2$-MWCNT composite decreases the light conversion efficiency, which is mainly ascribed to the decreased transmittance of light by MWCNT and to the decreased adsorption of dye onto $TiO_2$. The MWCNT employed counter electrode exhibited much lower light conversion efficiency of DSSC than the Pt-counter electrode, while the MWCNT-Pt counter electrode showed similar in light conversion efficiency to that of Pt-counter electrode.

Determination of Cr(Ⅵ) by Glassy Carbon and Platinum Electrodes Modified With Polypyrrole Film (폴리피롤 막으로 변성시킨 유리질 탄소 및 백금 전극에서 Cr(Ⅵ) 이온의 정량)

  • Yoo, Kwang Sik;Woo, Sang Beom;Jyoung, Jy Young
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.407-411
    • /
    • 1999
  • Studies have been carried out on the fabrication of PPy/GC and PPy/Pt electrode modified with polypyrrole film and determination of Cr(VI) by using 3-electrode system with modified electrodes. Modified electrodes were able to easily fabricated by cyclic voltammetry scanned from +1.0V to -1.0V(vs. Ag/AgCl) at 50 mV/sec. Film thickness could be controlled at same condition by the number of cycling up to 26 times. Reduction behaviour of Cr(VI) at PPy/GC electrode could be seen at wide potential ranges from +0.6V to -0.5V(vs. Ag/AgCl), and maximum reduction peak potential of the ion was observed at -0.25V(vs.Ag/AgCl). Calibration graph at its potential was linear from 0.1 ppm to 80.O ppm. Slope factor and relative coefficient were 1.75 mA/ppm and 0.998, respectively. Reduction behaviour of Cr(VI) at PPy/Pt electrode was similar to PPy/GC electrode, Calibration graph was linear from l.0 ppm to 60.0 ppm. Slope factor and relative coefficient were 0.5mA/ppm and 0.923, respectively. But PPy/GC modified electrode had about 3 times higher sensitivity than PPy/Pt modified electrode. Reduction behaviour of Cu(II), As(IlI), Pb(II), and Cd(II) couldn't be seen at PPy/GC electrode,Its metals had not lnterfered with Cr (VI) determination.

  • PDF

Synthesis and Characterization of Non-precious Metal Co-PANI-C Catalysts for Polymer Electrolyte Membrane Fuel Cell Cathodes (고분자 전해질 연료전지 캐소드용 코발트-폴리아닐린-탄소로 구성된 비귀금속 촉매의 제조 및 특성 평가)

  • Choi, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • In order to overcome the cost issue for commercialization of polymer electrolyte membrane fuel cell (PEMFC), this research was conducted for replacing platinum cathode catalyst with non-precious metal catalyst. The non-precious metal catalyst (Co-PANI-C) was synthesized by the simple reduction method with polyaniline (PANI), carbon black, and cobalt precursor without any heat treatment. Characterization of new Co-PANI-C composite catalysts was done by the measurement of X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for structure analysis and performed by rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) for electrochemical analysis. As a result, Co-PANI-C catalyst showed 60 mV lower on-set potential for oxygen reduction reaction (ORR) than Pt/C catalyst, but the overall reduction current of Co-PANI-C catalysts by ORR was still smaller than that of Pt/C. In addition, the ORR behavior of Co-PANI-C catalysts depending on the rotation speed of electrode and the stability of Co-PANI-C catalyst under potential cycling and the performance of fuel cell conditions are also discussed.

Disposable Glucose Sensor Based on Platinised Carbon Paste Electrode (백금 도금된 탄소반죽 전극을 이용한 일회용 글루코오스 센서)

  • Lee Dong Joo;Yoo Jae Hyun;Cui Gang;Choi Moon Hee;Kim Moon Hwan;Ryu Joon Oh;Han Sang-Hyun;Cha Geun Sig;Nam Hakhyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.227-231
    • /
    • 1999
  • Disposable, amperometric glucose sensor was constructed using platinised carbon paste electrode. The sensor response was studied by amperometry and cyclic voltammetry applying sample solutions on the strip-type electrode. Platinization of screen-printed carbon paste electrode effectively improved the electrochemical reversibility of a mediator and the analytical characteristics of the sensor. The heterogeneous rate constant for $[Fe(CN)_6]^{4-/3-}$ was $1.45\times10^{-2}cm{\cdot}s^{-1}$. An applied potential of 0.3V vs. Ag/AgCl resulted in the best selectivity for glucose. The apparent Michaelis-Menten constant for glucose on the strip sensor, $K_m^{app}$, was 24.5 mM. To evaluate the analytical performance of the glucose sensor strip, a correlation study was performed with the NOVA S.P, Ultra M analyzer for 30 serum samples containing $80\~297mg/dL$ of glucose: the correlation coefficient value was 0.983. It can be seen that the strip sensor has satisfactory precision and accuracy.

Effects of Ru/C Catalyst on the CO Tolerance of Anode and Durability of Membrane in PEMFC (PEMFC에서 전극의 CO 내성 및 막 내구성에 미치는 Ru/C 촉매의 영향)

  • Sim, Woo-jong;Kim, Dong-whan;Choi, Seo-hee;Kim, Ki-joong;Ahn, Ho-Geun;Jung, Min-chul;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.286-290
    • /
    • 2008
  • Small amounts of CO in reformate fuel gas effectively block platinum catalysts by strong adsorption on the platinum surface at the operation temperature of $60{\sim}80^{\circ}C$ in PEMFC. To oxidate CO, Ru/C layer (CO filter) was placed between Pt/C layer and GDL (gas diffusion layer) in this study. Ru/C filter provided good CO-tolerant PEMFC anode, but decreased the performance of unit cell about 10% at 0.6 V due to mass transfer resistance from Ru/C filter thickness and increase of charge transfer resistance. Membrane degradation is one of the most important factors limiting the life-time of PEMFCs. Membrane durability would be dependent on the electrode catalyst type. It seemed that Ru catalyst layer would shorten the life time of PEMFC as enhanced the fluoride emission rate of membrane in acceleration test.

Effects of Storage Condition on Degradation of Automotive Polymer Electrolyte Membrane Fuel Cells (보관상태가 자동차용 고분자전해질 연료전지의 성능 감소에 미치는 영향)

  • Cho, Eun-Ae
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.277-282
    • /
    • 2010
  • Durability of automotive polymer electrolyte membrane fuel cell (PEMFC) strongly depends the startup/shutdown procedure. Formation of hydrogen/air boundary in the anode gas channel, so-called reverse current condition, particularly induces fast degradation of the cathode. Under the reverse current condition, high voltage is present at the cathode facing air in the anode gas channel and is a function of residual oxygen concentration in the gas channels, that increases with storage time and reaches 21% (air) eventually. In this study, effects of residual oxygen concentration in a PEMFC on degradation of the PEMFC.

Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction (산화환원반응용 백금 촉매 지지체를 위한 질소 도핑된 단백질계 탄소의 제조)

  • Lee, Young-geun;An, Geon-hyeong;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.182-188
    • /
    • 2018
  • Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high $E_{1/2}$ of 0.55 V, and a low ${\Delta}E_{1/2}=0.32mV$. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped protein-based carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.

Geometrically Inhomogeneous Random Configuration Effects of Pt/C Catalysts on Catalyst Utilization in PEM Fuel Cells (연료전지 촉매층 내 촉매활성도에 대한 탄소지지 백금 촉매의 기하학적 비등방성 효과에 관한 연구)

  • Shin, Seungho;Kim, Ah-Reum;Jung, Hye-Mi;Um, Sukkee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.955-965
    • /
    • 2014
  • Transport phenomena of reactant and product are directly linked to intrinsic inhomogeneous random configurations of catalyst layer (CL) that consist of ionomer, carbon-supported catalyst (Pt/C), and pores. Hence, electrochemically active surface area (ECSA) of Pt/C is dominated by geometrical morphology of mass transport path. Undoubtedly these ECSAs are key factor of total fuel cell efficiency. In this study, non-deterministic micro-scale CLs were randomly generated by Monte Carlo method and implemented with the percolation process. To ensure valid inference about Pt/C catalyst utilization, 600 samples were chosen as the number of necessary samples with 95% confidence level. Statistic results of 600 samples generated under particular condition (20vol% Pt/C, 30vol% ionomer, 50vol% pore, and 20nm particle diameter) reveal only 18.2%~81.0% of Pt/C can construct ECSAs with mean value of 53.8%. This study indicates that the catalyst utilization in fuel cell CLs cannot be identical notwithstanding the same design condition.

Effect of Chemical Treatment on Performance Behaviors of PtRu/GNFs Catalysts for DMFCs (직접 메탄올 연료전지용 PtRu/GNF 성능에 대한 화학적 처리의 영향)

  • Park, Soo-Jin;Park, Jeong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.369-372
    • /
    • 2009
  • In the present study, the effect of chemical treatment on graphite nanofibers (GNFs) supports with various concentrated nitric acids was investigated for methanol oxidation. To optimize the electrocatalytic activity, PtRu catalysts were deposited on GNF supports by impregnation method. The surface and structural properties of the GNF supports were characterized by X-ray photoelectron spectroscopy (XPS), element analyzer (EA), and X-ray diffraction (XRD). The morphology of the catalysts was observed by means of transmission electron microscopy (TEM). The electrocatalytic activity of PtRu/GNF catalysts was investigated by cyclic voltammetry measurement. As a result, the oxygen functional groups were introduced on the GNF supports and were gradually increased with increasing of concentrated nitric acid, causing the smaller particle size and higher loading level. And the electrocatalytic activity of the catalysts for methanol oxidation was gradually improved. Consequently, it was found that chemical treatments could influence on surface properties of the carbon supports, resulting in enhancing the electrocatalytic activity of the catalysts for DMFCs.

  • PDF

Application of Pt/C (60 wt.%) on electrode catalyst layer of direct methanol fuel cell (백금담지 촉매의 직접메탄올 연료전지 환원전극 적용)

  • Cho, Yong-Hun;Cho, Yoon-Hwan;Park, Hyun-Seo;Jung, Nam-Gee;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.188-190
    • /
    • 2007
  • The MEA with the catalyst layer containing PtRu black and 60 wt. %Pt/C as their anode and cathode catalysts. For find to effect of carbon support, the MEA with platinum black for cathode catalyst was fabricated. The performance of the MEA with the catalyst layer containing (PtRu black:60 wt.% Pt/C) as their anode and cathode catalyst has shown competitively higher value than the performance of the MEA with the catalyst layer containing (PtRu black:Pt black) as their anode and cathode catalyst.

  • PDF