• Title/Summary/Keyword: 백금 용해

Search Result 171, Processing Time 0.024 seconds

Cathodic Reduction of Dichromate Ion (중크롬산이온의 음극 환원반응)

  • Lee Ju-Seong
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.276-283
    • /
    • 1977
  • Reduction of dichromate at a platinum cathode in acid solution was studied by cyclic voltammetry and controlled potential electrolysis. Cathodic polarization curve consisted of three waves in unbuffered solution of potassium dichromate having initial pH ranges 1.5∼4.0, with sodium sulfate as the supporting electrolyte. Relative heights of the first and the second waves were, respectively, a function of chromium (Ⅵ) concentration and activity of hydrogen ion, but that of the third wave was not proportional to both of them. The current of the first two peaks were proportional to the sweep rate of potential (${\nu}$), while that of the last peak vs. ${\nu}^{1/2}$ was linear at the sweep rate of less than 50mV/sec. By the controlled potential electrolysis, the reduction of chromium (Ⅵ) was almost completely suppressed at potentials more negative than the last peak and at initial pH's above ca. 2.3 of unbuffered solution. Therefore, these peaks represented, respectively, $Cr_2O_7^{2-}{\to}Cr^{3+},\;2H^+{\to}H_2$ and the formation of a cathodic film.

  • PDF

Oxidation Characteristics of Methanol on Pt/C and Pt-Ru/C Catalyst for the Anode of Direct Methanol Fuel Cell (Pt/C 및 Pt-Ru/C 촉매를 사용한 직접 메탄올 연료전지 연료극의 메탄올 산화 반응 특성)

  • 정두환;이창형;신동열
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.35-43
    • /
    • 1998
  • Electrodes using for the anode electrode of direct methanol fuel cell with Pt/C and Pt/Ru/C catalyst were prepared and characterized by SEM, TEM, thermal analysis and electrochemical analysis. The half cell tests were carried out with 1 M $H_2SO_4$ electrolyte and 1 M $CH_3OH$ in order to evaluate the electrode performance. The employed electrochemical methods were cyclic vol-tammetry and potentiodynamic polarization experiments. It was found that 20 w% polytetrafluoroethylene (PTFE) content in catalyst showed the best performance due to the best platinum utilization on PTFE-containing catalyst layer. It was found that Pt/Ru/C binary catalyst inhibited the poisoning of anode electrode showing improved performance compared to the Pt/C catalyst by the adsorption of oxygen containing species on the electrode surface at same time. The apparent activation energy for methanol oxidation on the Pt/Ru/C and Pt/C catalyst layer was 11.60 kJ/mol and 26.85 kJ/mol, respectively.

  • PDF

The Effects of Sulfur on the Catalytic Reaction between Carbon Monoxide and Nitric Oxide on Polycrystalline Platinum Surface (다결정 백금표면에서의 일산화탄소와 일산화질소의 촉매반응에 미치는 황의 영향)

  • Park, Youn-Seok;Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.215-223
    • /
    • 1990
  • The effects of sulfur on the catalytic reaction between CO and NO on polycrystalline Pt surface, which is very important in the development of catalyst for automobile exhaust gas control, have been studied using thermal desorption spectrometry(TDS) under ultra-high vacuum(UHV) conditions. Sulfur weakened both the adsorptions of CO and NO by direct site blocking and indirect electronic effect. S(a) desorbing below 800 K gave little effect on reaction activity whereas S(a) desorbing above 800 K, which adsorbs as an atomic state, gave much effect on it. The adsorbed sulfur existed on the surface of platinum in the form of islands, and also reduced the adsorption energies of adsorbates by the long-ranged electronic effect. The platinum catalyst in the reaction between CO and NO was poisoned selectively by S(a), poisoning firstly the active sites of this reaction.

  • PDF

A Study on the Reaction between Carbon Monoxide and Nitric Oxide on Platinum Catalyst (백금촉매상에서 일산화탄소와 일산화질소의 반응에 관한 연구)

  • Park, Youn-Seok;Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.207-214
    • /
    • 1990
  • The catalytic reaction between CO and NO on polycrystalline Pt surface, which is very important in the development of catalyst for automobile exhaust gas control, has been studied using thermal desorption spectrometry(TDS) and steady-state experiment under ultra-high vacuum(UHV) conditions. With the pressures of CO and NO of each $1{\times}10^{-7}Torr$, the $CO_2$ formation rate showed a maximum at 560K. At the reaction temperature of 560K and the NO pressure of $1{\times}10^{-7}Torr$, the production of $CO_2$ was first order in $CO_2$ was first order in CO pressure below $1.35{\times}10^{-7}Torr$ of CO pressure whereas at higher CO pressures the rate became minus 0.3 order in CO. But the efforts of reactant pressure on the reaction was understood in consideration of the surface concentrations of adsorbates. With the results, we proposed a new reaction mechanism for this reaction.

  • PDF

Effect of Change of Hydrogen Rich Reductant on HC-SCR over Co-Pt/ZSM5 Catalyst (수소 풍부 환원제 변화가 Co-Pt/ZSM5 촉매를 사용하는 탈질 HC-SCR 반응에 미치는 영향)

  • Kim, Seong-Soo;Kim, Dae-Young;Oh, Se-Young;Yoo, Seong-Jeon;Sur, Young-Sek;Kim, Jin-Gul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2012
  • HC-SCR was conducted over Co-Pt/ZSM5 catalyst coated over 200 cpsi cordierite in the condition of atomspheric pressure and $200^{\circ}C-500^{\circ}C$. Weight ratio of Co/Pt determined from EDX analysis was 8/2, which was almost equal to the weight ratio at preparation step. XPS showed that nitrates within cobalt precursor and chlorine withn Pt precursor were removed. TEM result demonstrated that crystallite size of cobalt and Pt was under 5nm. Among these tested hydrocarbon reductants, isobutane ($i-C_4H_{10}$) showed the highest de-$NO_x$ yield of 80% under the condition of the mole ratio of reductant/NOx=1.0 at $180^{\circ}C$. De-$NO_x$ yield from HC-SCR was increased as the carbon number of hydrocarbon reductant was increased. The decrease of bonding energy between C and H of HC reductant played a role to increase of de-$NO_x$ yield, which indicated that the dissociation step of C-H bond of hydrocarbon molecule might be the rate determining step of HC-SCR. The increase of oxygen concentration in the feed resulted in the decrease of de-$NO_x$ yield but the increase of CO and $N_2O$ yield.

Development of Flow Injection Analysis System for Amperometric Determination of Cholesterol Using Immobilized Enzyme Columns (고정화 효소컬럼을 이용한 콜스테롤 측정용 Flow Injection Analysis 시스템의 개발)

  • 신민철;김학성
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.328-335
    • /
    • 1993
  • A flow injection analysis(FIA) system was developed for the determination of cholesterol using immobilized cholesterol oxidase and cholesterol ester hydrolase. The enzymes were immobilized on controlled pore galas(CPG) by the glutaraldehyde method. The glass colunms packed with immobilized enzymes were found to contain 3-5 I.U. for each enzyme. A hydrogen peroxide sensitive electrode was contructed and applied to the FIA system. The operational conditions for FIA response were investigated and optimized with variation of sampling volume, flow rate and composition of carrier solution. The FIA response were linear upto 60 and 400mg/m1 for free cholesterol and cholesterol ester, respectively. All samples were analyzed with a good precision (<2.5% CV) and accuracy. 23 samples were mea sured succesively within about an hour. Intermittent assays of more than 500 times caused 50% decrease in response sensitivity.

  • PDF

Production Conditions of the Photo-catalyst for Removing Indoor Pollutants (실내오염물질 제거용 광촉매의 제조조건에 따른 반응활성 연구)

  • Nam, Ki Bok;Park, In Chul;Hong, Sung Chang
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • This study was performed to study the photocatalyst for controlling the pollutant such as CO, C2H5OH and H2S by the UV light. This was shown in a catalyst having the same volume and the same surface area, that the structure in which the UV light to reach the interior structure exhibits more excellent activity. However, the activity of this activity of this photocatalyst removal of CO was very low. This problem can be solved by performing a reduction process by the addition of the precious metal series of Pt. Particularly, the amount of chemical species Pt0 incerased in the surface of Pt/TiO2 photocatalyst through the reduction process, which make the reaction activity of photocatalyst excellent to the removal of the CO.

Electrocatalytic Activity of Platinum-palladium Catalysts Prepared by Sequential Reduction Methods (순차적 환원 방법으로 제조된 백금-팔라듐 촉매의 전기 활성)

  • Park, Jae Young;Park, Soo-Jin;Jung, Yongju;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.153-156
    • /
    • 2012
  • In this study, two different methods were studied to prepare Pt-Pd catalysts for direct methanol fuel cells in order to enhance the electrochemical efficiency. The catalysts were compared with simultaneously deposited Pt-Pd and sequentially deposited Pt-Pd. The electrocatalysts contained 20 wt% of metal loading on carbon black and 1 : 2 of Pt : Pd atomic ratio. Electrochemical properties of the catalysts were compared by measuring cyclic voltammetries and average sizes and lattice parameters were measured by transmission electron microscopy images and x-ray diffraction. As a result, sequentially deposited Pt-Pd/C catalysts showed better electrochemical properties than those of simultaneously deposited Pt-Pd/C catalysts.

Understanding the Categories and Characteristics of Depressive Moods in Chatbot Data (챗봇 데이터에 나타난 우울 담론의 범주와 특성의 이해)

  • Chin, HyoJin;Jung, Chani;Baek, Gumhee;Cha, Chiyoung;Choi, Jeonghoi;Cha, Meeyoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.9
    • /
    • pp.381-390
    • /
    • 2022
  • Influenced by a culture that prefers non-face-to-face activity during the COVID-19 pandemic, chatbot usage is accelerating. Chatbots have been used for various purposes, not only for customer service in businesses and social conversations for fun but also for mental health. Chatbots are a platform where users can easily talk about their depressed moods because anonymity is guaranteed. However, most relevant research has been on social media data, especially Twitter data, and few studies have analyzed the commercially used chatbots data. In this study, we identified the characteristics of depressive discourse in user-chatbot interaction data by analyzing the chats, including the word 'depress,' using the topic modeling algorithm and the text-mining technique. Moreover, we compared its characteristics with those of the depressive moods in the Twitter data. Finally, we draw several design guidelines and suggest avenues for future research based on the study findings.

Preparation of V3.5+ Electrolyte for Vanadium Redox Flow Batteries using Carbon Supported Pt Dendrites Catalyst (카본 담지 백금 덴드라이트 촉매를 이용한 바나듐 레독스 흐름전지용 3.5가 바나듐 전해질의 제조)

  • Lee, Hojin;Kim, Hansung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.113-119
    • /
    • 2021
  • In this study, impurity free V3.5+ electrolytes were prepared using formic acid as a reducing agent and PtD/C as a catalyst and it was applied to VRFB. The well-oriented 3D dendrite structure of the PtD/C catalyst showed high catalytic activity in formic acid oxidation reaction and vanadium reduction reaction. As a result, the conversion ratio of electrolyte using the PtD/C was 2.73 mol g-1 h-1, which was higher than that of 1.67 mol g-1 h-1 of Pt/C prepared by the polyol method. In addition, in the VRFB charging and discharging experiment, the V3.5+ electrolyte produced by the catalytic reaction showed the same performance as the standard V3.5+ electrolyte prepared by the electrolytic method, thus proving that it can be used as an electrolyte for VRFB.