• Title/Summary/Keyword: 배합수량

Search Result 88, Processing Time 0.021 seconds

An Experimental Study on the Quality Characteristics of Soil-Cement for Deep Mixing Method Using Carbon Capture Minerals(CCM) (이산화탄소 포집광물을 활용한 심층혼합처리용 Soil-Cement의 품질 특성에 관한 실험적 연구)

  • Jung, Woo-Yong;Ju, Hyang-Jong;Oh, Sung-Rok;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.153-160
    • /
    • 2020
  • In this study, the optimum ratio of soil-cement was derived to utilize carbon capture minerals(CCM) as soil-cement for deep mixing method, quality characteristics of soil-cement mixed with carbon capture minerals were evaluated. The CCM is generated in the form of a slurry, and as a result of evaluating water content, it was found to be about 50%. Accordingly, the water content of CCM was removed in the unit water of Soil-cement mix. As a result of field mixing of soil-cement using CCM on field soil, it showed that the design allowable bearing capacity was satisfied by showing 3.0MPa or more as of 28 days of age. As a result of the hazard verification of carbon capture minerals, 0.055mg/L of Cu was detected, but satisfies the acceptance criteria, and no other harmful substances were eluted.

Evaluation of Self-Compaction Property of Section Enlargement Strengthening Concrete (단면확대 보강 적용을 위한 콘크리트의 자기충전 성능 평가)

  • Hwang, Yong-Ha;Yang, Keun-Hyeok;Song, Keum-Il;Song, Jin-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.235-242
    • /
    • 2019
  • The objective of this study is to modify the mixture proportions of concrete that were developed for section enlargement strengthening elements using a specially designed binder composed of 5% ultra-rapid hardening cement, 10% polymer, and 85% ordinary portland cement in order to assign the self-compaction property to such concrete. The self-compaction abilities of concrete were estimated by the performance criteria specified in JSCE and EFNARC provions. Test results showed that the increase in the unit binder content at the consistent water-to-bider ratio led to increase in viscosity of fresh concrete but did not exhibit the decrease in the fluidity due to a greater viscosity. The mixture proportioning of self-compaction section enlargement concrete could be considered at the following conditions: unit binder contents of $430kg/m^3{\sim}470kg/m^3$ and fine aggregate-to-total aggregate ratios of 40%~46% at the water-to-binder ratio of 38%.

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

Influence of Drying Methods on Measurement of Hydration Degree of Hydraulic Inorganic Materials: 2) Alkali-activated slag (수경성 무기재료의 수화도 측정에 대한 건조방법의 영향: 2) 알칼리 활성 슬래그)

  • Lee, Hyo Kyong;Song, Keum-Il;Song, Jinkyu;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.106-117
    • /
    • 2018
  • The present study was carried out to find a suitable drying method for the determination of non-evaporable water in hydraulic inorganic materials. In Part 1 of the paper, the case ordinary Portland cement was discussed and, in this Part 2, the case of alkali active slag (AAS) was investigated. Various drying methods including vacuum and oven drying, and an ignition, were used for the AAS system having different w/b, types and amounts of alkali activators. It was found that a combination of the vacuum and oven drying was a suitable drying method for the AAS case. Although a part of the crystallized water in hydration products was decomposed, but the free and adsorbed water could be completely evaporated and the deviation of the results was small.

Mixture Proportion and Compressive Strength of the Concrete According to Changes of Type of Fine Aggregate and Unit Binder Weight (잔골재원 및 단위결합재량 변화에 따른 콘크리트의 배합 및 강도 특성)

  • Moon, Byeong-Yong;Lee, Sus-Jae;Park, Young-Jun;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.19-20
    • /
    • 2015
  • In this research, by examining the influence that high quality fine aggregate and low quality fine aggregate have on the strength of concrete through tests, the manifest strength of concrete according to high quality fine aggregate was reviewed. The results showed that compared to low quality fine aggregate usage mixture, the unit volume to achieve the same liquidity decreased and accordingly the W/B also decreased therefore increasing the strength of concrete, and as high quality fine aggregate was used, it is determined that there can be improvements to the economically feasibility of usage mixture and improvement in durability etc.

  • PDF

Influence of the Mixing Factor on the Properties of Concrete Used Artificial Lightweight Aggregates (인공경량골재를 사용한 콘크리트의 물성에 미치는 배합요인의 영향)

  • Shin, Jae-Kyung;Choi, Jin-Man;Jeong, Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.73-77
    • /
    • 2008
  • Structural lightweight concrete will reduced total loads of supporting sections and foundations in archtectural and civil structures. So, the lightweight concrete can be used widely for various purpose in the archtectural and civil structures. This paper were examined the influence of the mixing factor on the fresh and hardened properties of lightweight concrete that are used 2types of the differences properties of lightweight aggregates. According to types of lightweight aggregates, the case of synthetic lightweight aggregate are have need higher s/a; 2~4% on mixing proportion. Lightweight concrete was somewhat exhibit lower compressive strength than ordinary concrete. However it was not showed a marked difference. According to types of lightweight aggregates, the case of synthetic the lightweight aggregate are highest performance in fresh and hardened concrete.

  • PDF

A Study on the Investigation of Performance about Quick Measurement Technology of Unit Water Content at Mixing Factor of High Strength Concrete (고강도 콘크리트의 단위수량 신속 측정기법별 배합요인에 따른 성능 검토에 관한 연구)

  • Yoon, Seob;Jung, Young-Min;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.745-748
    • /
    • 2008
  • On investigation about quick measurement technology of unit water at range of W/B=35% in high strength, the average error of the Di-electric constant moisture tester A has measured more than $23.0kg/m^3$ unit water content of design and the average error of the method of unit volume weigh was less than $-9.6kg/m^3$. The average error with mixing factor has influenced with a kind of sand, but had not influenced with unit water content of design. Therefore, it will be for introduce business decide require more than a study about cement, sand, superplasticizer, etc.

  • PDF

Quality Properties of Zero Cement Blast Furnace Slag Mortar Using the Recycled Fine Aggregates Depending on Mixing Factors (순환잔골재를 사용한 무 시멘트 고로슬래그 모르터의 배합요인에 따른 품질특성)

  • Han, Cheon-Goo;Son, Seok-Heon;Park, Kyung-Taek
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.70-77
    • /
    • 2010
  • This study is to investigate experimentally the influence of mixing factors, such as a mortar mix proportion of non-cement mortar, flow, and W/B, on quality characteristics of blast furnace slag powder mortar incorporating dry type recycled fine aggregates. In the characteristics of fresh mortar, the W/B increased according to the increase in the flow due to the increase in water contents, but air contents decreased due to loss of air contrary to the increase in the W/B. In the case of hardened mortar, the compressive strength showed a decrease due to the highly determined W/B inversely according to the increase in the flow through the entire age in which the compressive strength increased proportionally according to the increase in the B/W. Also, the increasing rate of such compressive strength increased more largely due to the latent hydraulic property of the BS according to the passage of the age. The flexural strength at the age of 28 days according to the increase in the B/W represented a similar level in strength values without any increases. The flexural strength for the compressive strength was distributed as a range of 1/2 ~ 1/3 and that showed a higher range than that of conventional concretes.

  • PDF

Characteristics of Drying and Autogeneous Shrinkage in HPC with 65% Replacement of GGBFS (고로슬래그 미분말을 65% 치환한 고성능 콘크리트의 자기 및 건조수축 특성)

  • Jang, Seung-Yup;Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.54-59
    • /
    • 2017
  • GGBFS (Ground Granulated Blast Furnace Slag) is a byproduct with engineering advantages and HVSC (High Volume Slag Concrete) is widely attempted due to active utilization and reduction of eco-load. In the present work, characteristics of drying shrinkage and early-aged behavior are evaluated for the concrete with 65% replacement ratio of GGBFS and 50MPa of design strength. For the work, 3 different mix conditions are considered and several tests including slump flow, compressive strength, drying and autogeneous shrinkage are performed. From the test, OPC 100 mixture without replacement shows higher strength development before 7 days, however the strength reduction in concrete replaced with GGBFS is not significant due to sufficient free water for cement hydration. OPC 100 mixture also shows significant drying shrinkage due to a great autogeneous shrinkage before 3 days. In the concrete with GGBFS replacement, the drying shrinkage behavior is improved due to relatively small deformation by autogeneous shrinkage. The mixture (OPT BS 65) with lower w/b ratio (0.27) and unit content of water ($160kg/m^3$) shows more improved shrinkage behavior than BS 65 mixture which has simple replacement of GGBFS with 0.30 of w/b and $165kg/m^3$ of water unit content.

Effect of Substrate Surface Water on Adhesive Properties of High Flowable VA/VeoVa-modified Cement Mortar for Concrete Patching Material (단면수복용 고유동성 VA/VeoVa 개질 시멘트 모르타르의 부착특성에 대한 피착면 표면수의 영향)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.94-104
    • /
    • 2013
  • Experiments were divided into two parts; one part is to understand the basic properties of high flowable VA/VeoVa-modified cement mortar with different polymer cement ratio (P/C) and the weight ratio of fine aggregate to cement (C:F) and the other part is to investigate the effect of surface water spread on the concrete substrate on adhesion in tension. To understand the basic performance, the specimens were prepared with proportionally mixing VA/VeoVa redispersible powder, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Here, P/C were 10, 20, 30, 50 and 75% and C:F were 1:1 and 1:3. As the change of P/C and C:F unit weight, flow test, crack resistance and adhesion in tension were measured. Three specimens with good adhesion properties were selected among specimens with different P/C and C:F. The effect of surface water evenly sprayed on concrete substrate on adhesive strength is investigated. The results show that surface water on concrete substrate increases the adhesion in tension of high flowable VA/VeoVa-modified cement mortar and additionally improves the flowability compared to the non-sprayed case.