• Title/Summary/Keyword: 배터리 R&D

Search Result 70, Processing Time 0.028 seconds

Battery Module Bonding Technology for Electric Vehicles (전기자동차 배터리 모듈 접합 기술 리뷰)

  • Junghwan Bang;Shin-Il Kim;Yun-Chan Kim;Dong-Yurl Yu;Dongjin Kim;Tae-Ik Lee;Min-Su Kim;Jiyong Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Throughout all industries, eco-friendliness is being promoted worldwide with focus on suppressing the environmental impact. With recent international environment policies and regulations supported by government, the electric vehicles demand is expected to increase rapidly. Battery system itself perform an essential role in EVs technology that is arranged in cells, modules, and packs, and each of them are connected mechanically and electrically. A multifaceted approach is necessary for battery pack bonding technologies. In this paper, pros and cons of applicable bonding technologies, such as resistance welding, laser and ultrasonic bonding used in constructing electric vehicle battery packs were compared. Each bonding technique has different advantages and limitations. Therefore, several criteria must be considered when determining which bonding technology is suitable for a battery cell. In particular, the shape and production scale of battery cells are seen as important factors in selecting a bonding method. While dealing with the types and components of battery cells, package bonding technologies and general issues, we will review suitable bonding technologies and suggest future directions.

Photovoltaic Generation System Operation for Energy Storage (Energy Storage용 태양광 발전시스템 운전)

  • Jang, S.J;Kang, H.H;Jung, S.M;Ryu, G.Y;Ko, B.H;Kim, W.M;Suh, I.Y
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.278-279
    • /
    • 2010
  • 본 논문은 태양광 인버터에 배터리 저장 장치가 포함된 ES(Energy Storage)용 태양광 발전시스템에 관한 내용이다. 배터리에 에너지를 충/방전시키기 위한 절연형 양방향 컨버터를 제안 하였으며, 태양광 발전시스템과 에너지 저장 시스템과의 운전 알고리즘에 대해 제안하고자 한다.

  • PDF

Case Study of ESS for Frequency Regulation in Substation (주파수 조정용 에너지 저장 시스템의 변전소 적용 사례)

  • Kim, Tae-Hyeong;In, Dong-Seok;Lee, Jong-Hak;Oh, Seung-Jin;Park, Young-Min;Kim, Dong Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.421-422
    • /
    • 2016
  • 에너지 저장 시스템(ESS, Energy Storage System)은 주파수 조정을 통한 계통 전력품질 개선, 풍력(WT)발전, 태양광(PV)발전등과 같은 신재생 에너지의 출력안정화, 에너지 저장을 통한 에너지효율화 등의 분야에 적용되고 있다. 특히 주파수 조정(F/R, Frequency Regulation)을 위한 에너지 저장 시스템은 한전의 많은 투자를 통해 활발하게 이루어 지고 있으며, 전국 변전소에 설치되고 있다. 주파수 조정을 위한 에너지 저장 시스템은 주파수 상승 시 계통의 전력을 배터리에 충전하고, 주파수 하락 시에는 배터리에 저장된 에너지를 계통에 공급하여 주파수를 안정화 시키는 역할을 한다. 본 논문에서는 주파수 조정용 에너지 저장 시스템의 변전소 적용 사례에 대해 설명한다.

  • PDF

Battery Sensitivity Analysis on Initial Sizing of eVTOL Aircraft (전기 추진 수직이착륙기의 초기 사이징에 대한 배터리 민감도 분석)

  • Park, Minjun;Choi, Jou-Young Jason;Park, Se Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.819-828
    • /
    • 2022
  • Sensitivity of aircraft sizing depending on battery performance was studied for a generic quad tilt rotor type electric vertical takeoff and landing vehicle. The mission requirements proposed by Uber Elevate and NASA were used for initial sizing, and the calculated gross weight is ranged between 5,000lb and 11,000lb for battery specific energy range of 200-400Wh/kg in pack level and continuous discharge rate range of 4-5C. For the assumed gross weight of 7,000lb, the required battery performance was calculated with two different criteria: available power and energy, and the effects of battery specific energy and discharge rate are analyzed. The maximum discharge rate is also recommended considering failure cases such as one battery pack inoperative and one prop rotor inoperative.

Electric Vehicle Market and Battery Related Technology Research Trends (전기자동차 시장 및 배터리 관련 기술 연구 동향)

  • KIM, YANGHWA;LIM, JAEWAN;PARK, GYUYEOL;LIM, OCK TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.362-368
    • /
    • 2019
  • Electric vehicles contribute greatly to energy conservation, $CO_2$ reduction and energy security through high fuel economy and various electric sources. Electric cars have a huge economic impact. More than 14 million hybrid electric cars have been sold worldwide. More than 3 million plug-in electric vehicles have been sold worldwide. The environmental impact depends greatly on the amount of national power generation, and as the electric grid becomes more and more carbon-intensive, countries are increasingly adopting hybrid and electric vehicles. Electricity is expanding beyond cars. Electric buses, trucks, and ships have similar benefits.

Thermally Conductive Polymer Composites for Electric Vehicle Battery Housing (전기자동차 배터리 하우징용 열전도성 고분자 복합재료)

  • Yoon, Yeo-Seong;Jang, Min-Hyeok;Moon, Dong-Joon;Jang, Eun-jin;Oh, Mee-Hye;Park, Joo-Il
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.331-337
    • /
    • 2022
  • Manufactured thermoplastic composite materials to replace the metal materials used as battery housing materials for electric vehicles with lightweight materials. As the matrix material, nylon 6 which is a polymer material was used. Boron Nitrate(BN), which has high thermal conductivity, was used to provide heat dissipation performance. The heat dissipation characteristics of the thermally conductive polymer composite material according to the BN content and particle size were analyzed. The thermal conductivity value increased as the filler content increased, and composite materials particle size of 60 to 70㎛ and BN content of 50%, the thermal conductivity was 1.4 W/mK. The larger the particle size, the wider the inter-particle interface contact surface, which means that a thermal path was formed. wider the interfacial contact surface between the particles, and the thermal path was formed. A battery housing was manufactured using the manufactured thermally conductive polymer composite material, and the temperature change during charging and discharging of the cell was observed, and the possibility as a substitute material for the battery housing was confirmed.

Numerical Study on the Heat Transfer Characteristics of 360 Wh Li-ion Battery Pack for Personal Mobility (360 Wh급 퍼스널 모빌리티용 리튬이온 배터리 팩의 열전달 특성에 관한 연구)

  • Kim, Dae-Wan;Seo, Jae-Hyeong;Kim, Hak-Min;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.1-7
    • /
    • 2017
  • This study numerically evaluates the heat transfer characteristics of a 360-Wh Li-ion battery pack. The analysis was done in ANSYS CFX using different cell arrangements, cell holders, and case materials for a personal mobility device program. A total of four cases of cell arrangements were considered, along with various materials for both the cell holder and the case, such as polypropylene, aluminum, and magnesium alloy. Out of the four cell arrangements, model 2 showed the best heat transfer performance, while aluminum showed the best heat transfer performance for the cell holder and case.

A Study on the prediction of SOH estimation of waste lithium-ion batteries based on SVM model (서포트 벡터 머신 기반 폐리튬이온전지의 건전성(SOH)추정 예측에 관한 연구)

  • KIM SANGBUM;KIM KYUHA;LEE SANGHYUN
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.727-730
    • /
    • 2023
  • The operation of electric automatic windows is used in harsh environments, and the energy density decreases as charging and discharging are repeated, and as soundness deteriorates due to damage to the internal separator, the vehicle's mileage decreases and the charging speed slows down, so about 5 to 10 Batteries that have been used for about a year are classified as waste batteries, and for this reason, as the risk of battery fire and explosion increases, it is essential to diagnose batteries and estimate SOH. Estimation of current battery SOH is a very important content, and it evaluates the state of the battery by measuring the time, temperature, and voltage required while repeatedly charging and discharging the battery. There are disadvantages. In this paper, measurement of discharge capacity (C-rate) using a waste battery of a Tesla car in order to predict SOH estimation of a lithium-ion battery. A Support Vector Machine (SVM), one of the machine models, was applied using the data measured from the waste battery.

Consideration for Technical Trend of Large Scale BESS PCS (대용량 BESS를 위한 PCS 기술동향에 대한 고찰)

  • Myung, Hongjae
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.273-274
    • /
    • 2011
  • 최근 급격한 전력수요의 증가는 발전설비 및 송배전 설비의 투자확대를 요구하고 있고 태양광, 풍력 등 신재생에너지 발전의 보급은 전력품질을 저하하는 요인으로 작용하여 이에 대한 대안으로 배터리를 이용한 에너지 저장장치(BESS : Battery Energy Storage System)의 개발이 활발히 이루어지고 있다. 본 논문에서는 BESS의 구성요소 중 배터리의 전력을 계통망과 연계하기 위한 전력 변환 장치인 PCS에 요구되는 기능과 기술동향에 대해 기술한다.

  • PDF