• Title/Summary/Keyword: 배터리 성능 예측

Search Result 60, Processing Time 0.026 seconds

Study on Analysis of Performance to Surrogate modeling Method for Battery State Estimation (리튬이온 배터리 상태 추정을 위한 근사모델링 방법과 그 성능 분석을 통한 수명 예측에 대한 연구)

  • Kang, Deokhun;Lee, Pyeng-Yeon;Jang, Shinwoo;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.206-207
    • /
    • 2019
  • 리튬이온 배터리의 상태를 모니터링 하는 방법에 있어서, 대표적으로 배터리의 충전 상태(SOC)와 배터리의 건강 상태(SOH)를 추정하여 상태 지표로 사용된다. 본 연구에서는 리튬 이온 배터리의 상태 지표를 위한 용량 정보의 추정을 데이터 기반의 근사 모델을 이용하여 수행하였다. 다양한 근사 모델링 방법을 적용하여 추정되는 용량 정보를 비교하고, 모델링 방법에 따른 용량 추정 성능을 확인하였다. 또한, 이를 바탕으로 리튬이온 배터리의 용량을 예측하고 예측 성능을 분석하였다. 본 연구를 통하여 근사모델을 이용하는 경우, 리튬이온 배터리의 용량 추정은 물론 예측을 수행하는 방법으로서의 활용 가능성을 확인하였으며, 또한 제안하는 방법을 이용하여 보유하고 있는 모니터링 데이터를 활용하여 리튬이온 배터리의 성능을 평가하는데 있어 효과적으로 활용될 수 있을 것으로 판단된다.

  • PDF

Battery pack internal cell imbalance characteristic parameter analysis and autoregression model for prognosis of over discharging (배터리 팩 내부 셀 불균형 특성 파라미터 분석 및 자기 회귀 모델 기반 과방전 사전 예측 알고리즘 연구)

  • Park, Jinhyeong;Kim, Gunwoo;Lee, Miyoung;Kim, Min-O;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.215-217
    • /
    • 2020
  • 본 논문은 배터리 팩 내부 셀 파라미터의 불균일도에 대한 분석을 실시하고 이를 기반으로 과방전을 사전에 진단할 수 있는 방법을 제안한다. 이를 위해서 배터리 팩 내부 셀간 편차가 발생하는 셀을 선정하여 두 셀간 특성 분석을 실시하였으며, 이를 기준으로 예측 모델을 구성하였다. 예측 성능을 통해 배터리 전압 예측 성능에 영향을 미치는 인자를 분석하였으며, 배터리 전기적 등가회로 모델을 기반으로 예측 모델을 제안한다. 예측 모델은 실제 과방전이 발생한 셀을 기준으로 실험데이터와 비교하여 예측 성능을 검증하였다.

  • PDF

Learning Data Model Definition and Machine Learning Analysis for Data-Based Li-Ion Battery Performance Prediction (데이터 기반 리튬 이온 배터리 성능 예측을 위한 학습 데이터 모델 정의 및 기계학습 분석 )

  • Byoungwook Kim;Ji Su Park;Hong-Jun Jang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.133-140
    • /
    • 2023
  • The performance of lithium ion batteries depends on the usage environment and the combination ratio of cathode materials. In order to develop a high-performance lithium-ion battery, it is necessary to manufacture the battery and measure its performance while varying the cathode material ratio. However, it takes a lot of time and money to directly develop batteries and measure their performance for all combinations of variables. Therefore, research to predict the performance of a battery using an artificial intelligence model has been actively conducted. However, since measurement experiments were conducted with the same battery in the existing published battery data, the cathode material combination ratio was fixed and was not included as a data attribute. In this paper, we define a training data model required to develop an artificial intelligence model that can predict battery performance according to the combination ratio of cathode materials. We analyzed the factors that can affect the performance of lithium-ion batteries and defined the mass of each cathode material and battery usage environment (cycle, current, temperature, time) as input data and the battery power and capacity as target data. In the battery data in different experimental environments, each battery data maintained a unique pattern, and the battery classification model showed that each battery was classified with an error of about 2%.

Performance Evaluation of Battery Remaining Time Estimation Methods According to Outlier Data Processing Policies in Mobile Devices (모바일 기기에서 이상치 데이터 처리 정책에 따른 배터리 잔여 시간 예측 기법의 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1078-1090
    • /
    • 2022
  • The distribution patterns of battery usage time data per battery level are able to affect the performance of estimating battery remaining time in mobile devices. Outliers may mainly affect the estimation performance of statistical regression methods. In this paper, we propose a software framework that detects and processes outliers to improve the estimation performance of statistical regression methods. The proposed framework first detects outliers that degrade the estimation performance. The proposed framework replaces outliers with smoothed data. The difference between an outlier and its replaced data will be properly distributed into individual data. Finally, individual data are reinforced to improve the estimation performance. The numerical results obtained by experimenting the proposed framework confirmed that it yielded good performance of estimating battery remaining time.

Improved SOH Prediction Model for Lithium-ion Battery Using Charging Characteristics and Attention-Based LSTM (충전 특성과 어텐션 기반 LSTM을 활용한 개선된 리튬이온 배터리 SOH 예측 모델)

  • Hanil Ryoo;Sang Hun Lee;Deok Jai Choi;Hyuk Ro Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.103-112
    • /
    • 2023
  • Recently, the need to prevent battery fires and accidents has emerged, as the use of lithium-ion batteries has increased. In order to prevent accidents, it is necessary to predict the state of health (SOH) and check the replacement timing of the battery with a lot of degradation. This paper proposes a model for predicting the degradation state of a battery by using four battery degradation indicators: maximum voltage arrival time, current change time, maximum temperature arrival time, and incremental capacity (IC) that can be obtained in the battery charging process, and LSTM using an attention mechanism. The performance of the proposed model was measured using the NASA battery data set, and the predictive performance was improved compared to that of the general LSTM model, especially in the SOH 90-70% section, which is close to the battery replacement cycle.

Prediction of Battery Package Temperature Rise with Machine-Learning (Machine-Learning을 통한 Battery Package 온도 상승 예측)

  • Jong-Hwa Cho;Yeon-A Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.341-342
    • /
    • 2023
  • 배터리 기술 고도화 및 기술표준 강화에 따라 완성차 제조사와 배터리 업계간 활발한 협업이이어질 전망이다. 또한 기존 배터리 제조사들이 활발한 증설 및 밸류 체인 확장을 통한 기술가격 경쟁력 격차 유지에 적극적으로 나서고 있어, 향후 시장 주도권 경쟁이 가속화될 것으로 전망된다. 배터리의 온도 상승은 배터리 효율을 낮추는 원인이며, 배터리 온도 제어가 전기자동차 차량의 전체 성능 향상에 중요한 부분이라고 할 수 있다. 본 연구는 실제 Battery Pack 실험 전 열유동해석을 통해 배터리온도 상승추이 및 냉각효율 검증을 진행하는 과정에서 발생하는 과도한 시간 소요를 줄이기 위해 Machine Learning 을 활용하여 검증 효율 및 설계 효율을 높이는데 그 목적이 있으며, CFD를 활용한 배터리 효율 최적화 설계를 하는 기존 모델 대비 30%~50%정도의 성능향상을 예측할 수 있다.

  • PDF

Cooling CFD Analysis of a Car Batter Pack with Circular Cells (원통형 셀을 이용한 자동차용 배터리팩 냉각해석)

  • Shin, Hyun Jang;Lee, Joo Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.693-698
    • /
    • 2017
  • The 18650 battery cell is known to be reliable and cost effective, but it has a design limitation and low electric capacity compared to pouch-type cells. Because its economy is superior, an 18650-cell-type battery pack is chosen. A reliable temperature is very important in automobile battery packs. Therefore, in this study, the temperature stability of the battery pack is predicted using CFD simulation. Following 3C discharge tests, the results for the heat generation of the battery cell are compared to the simulation results. Based on these results, a natural convection condition, forced convection condition, direct cell-cooling condition, cooling condition on the upper and lower surfaces of the battery pack, and cooling condition using air channels are all simulated. The results indicate that the efficiency and the performance of the air-channel-type cooling system is good.

Remaining Useful Life of Lithium-Ion Battery Prediction Using the PNP Model (PNP 모델을 이용한 리튬이온 배터리 잔존 수명 예측)

  • Jeong-Gu Lee;Gwi-Man Bak;Eun-Seo Lee;Byung-jin Jin;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1151-1156
    • /
    • 2023
  • In this paper, we propose a deep learning model that utilizes charge/discharge data from initial lithium-ion batteries to predict the remaining useful life of lithium-ion batteries. We build the DMP using the PNP model. To demonstrate the performance of DMP, we organize DML using the LSTM model and compare the remaining useful life prediction performance of lithium-ion batteries between DMP and DML. We utilize the RMSE and RMSPE error measurement methods to evaluate the performance of DMP and DML models using test data. The results reveal that the RMSE difference between DMP and DML is 144.62 [Cycle], and the RMSPE difference is 3.37 [%]. These results indicate that the DMP model has a lower error rate than DML. Based on the results of our analysis, we have showcased the superior performance of DMP over DML. This demonstrates that in the field of lithium-ion batteries, the PNP model outperforms the LSTM model.

Development of the Impedance Spectroscopy Instrument to Evaluate the Residual Useful Life of a Used Battery Module (폐배터리 모듈의 잔존수명 평가를 위한 임피던스 스펙트럼 측정 장치 개발)

  • Lee, Seungjune;Farooq, Farhan;Khan, Asad;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.195-197
    • /
    • 2019
  • 자동차용 배터리는 초기 용량의 80% 이하가 되면 교체하게 되며, 근간 폐배터리의 수가 폭발적으로 증가할 것으로 예측되고 있다. 폐배터리의 폐기로 인한 환경 파괴를 방지하고 자원을 재활용하기 위해서 자동차에서 나오는 폐배터리를 에너지저장장치(ESS)로 재사용 하는 것에 대한 관심이 높아지고 있다. 폐배터리를 ESS로 재구성하기 위해서는 폐배터리 모듈의 그레이딩을 통해 비슷한 성능의 모듈끼리 모아서 구성하는 것이 매우 중요하다. 배터리 모듈 간의 불균형은 전체 시스템의 성능을 저하시키며, 따라서 비슷한 성능과 잔존 수명을 가진 모듈을 골라내는 일은 폐배터리의 재사용에 있어서 첫 번째 선결 과제가 된다. 본 연구에서는 폐배터리의 상태 및 잔존수명평가를 위해 배터리 모듈의 임피던스 스펙트럼을 측정할 수 있는 장비를 개발하였다. 폐배터리 모듈에 AC 섭동을 인가하고 이를 측정하여 임피던스 스펙트럼을 계산할 수 있는 하드웨어와 소프트웨어를 개발하였다. 개발 장비는 60V이하의 폐배터리 모듈의 임피던스 스펙트럼을 0.1Hz에서 1kHz까지 측정 가능하며, 측정 결과를 바탕으로 커브 피팅을 통해 등가회로의 파라미터도 계산할 수 있다. SM3에서 얻어진 폐배터리 모듈을 이용하여 측정한 임피던스 스펙트럼을 상용장비인 BIM2로 측정한 결과를 비교하였고, Reduced Chi-Square를 이용한 분석결과 두 데이터가 거의 일치함을 알 수 있었다.

  • PDF

Numerical Study on the Heat Transfer Characteristics of 360 Wh Li-ion Battery Pack for Personal Mobility (360 Wh급 퍼스널 모빌리티용 리튬이온 배터리 팩의 열전달 특성에 관한 연구)

  • Kim, Dae-Wan;Seo, Jae-Hyeong;Kim, Hak-Min;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.1-7
    • /
    • 2017
  • This study numerically evaluates the heat transfer characteristics of a 360-Wh Li-ion battery pack. The analysis was done in ANSYS CFX using different cell arrangements, cell holders, and case materials for a personal mobility device program. A total of four cases of cell arrangements were considered, along with various materials for both the cell holder and the case, such as polypropylene, aluminum, and magnesium alloy. Out of the four cell arrangements, model 2 showed the best heat transfer performance, while aluminum showed the best heat transfer performance for the cell holder and case.