• Title/Summary/Keyword: 배연속도

Search Result 28, Processing Time 0.023 seconds

Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas (습식 배연탈황 시스템의 효율 향상을 위한 전산해석)

  • Hwang, Woo-Hyeon;Lee, Kyung-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.161-171
    • /
    • 2014
  • In this paper the flow dynamics of the flue gas equipment in the desulfurization system was numerically analyzed by simulating the problems for the turbulent and combustion flow from Induced Draft Fan(I.D.Fan) outlet to Booster Up Fan(B.U.Fan) inlet using the commercial CFD software of CFD-ACE+ in CFDRC company for Computational Fluid Dynamic Analysis. The guide vane of this section was examined for the minimum pressure loss and the uniform flow dynamic to B.U.Fan with the proper velocity from I.D,Fan exit to B,U,Fan inlet section at the boiler both the maximum continuous rating and the design base. The guide vanes at I,D.Fan outlet and B.U.Fan inlet were removed and modified by numerical simulation of the CFD analysis. The flue gas at the system had the less pressure loss and the uniform flow dynamics of the flow velocity and flow line by comparing with the old design equipment.

An Experimental Study on the Determination of Backlayering Distance in Tunnel Fires (터널 화재시 역기류의 위치 결정에 관한 실험적 연구)

  • 이성룡;유홍선
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.269-274
    • /
    • 2004
  • In this study reduced-scale experiments were conducted to determine the backlayering distance in tunnel fires. The 1/20 scale experiments were carried out under the Froude scaling using ethanol square pool fire ranging from 8 to 1km in each side with total heat release rate from 2.47 to 12.30 ㎾. It has been found that ventilation velocity increases with aspect ratio(tunnel height/tunnel width). At L$\_$B/$\^$*/ <5 the ventilation velocity increases proportional to the backlayering distance from 0.25 power of the heat release rate. However at L$\_$B/$\^$*/ $\geq$5 the ventilation velocity varies as the 0.3 power of the heat release rate.

Model Development of Spray Dryer Absorber FGD Process (Spray Dryer Absorber 배연탈황공정의 모델 개발)

  • Jang, Sun-Hee;Oh, Eui-Kyung;Lee, Hyung-Keun;Kim, Sun-Geon
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.80-95
    • /
    • 1996
  • A mathematical model has been developed for simulating the spray dryer absorber (SDA) used in semi-dry flue gas desulfurization process. Fundamental equations include the component mass and heat balances in both gas and droplet phases and the equation of motion for a single droplet. The model developed described the pilot-plant data much better than the existing SPRAYMOD-M model. The effect of the process variables, whose values were chosen within the operation limits of the actual pilot plants, on % $SO_2$ removal or conversion of the sorbent were calculated, and discussed in terms of $SO_2$ absorption rate, the residence time of flue gas, the velocity and drying time of droplets. Finally, the % $SO_2$ removal was calculated with two independent process variables and the results were shown on three-dimensional or two-dimensional diagrams with the lines of constant % $SO_2$ removal, so that they can be easily applied to preliminary design of the SDA.

  • PDF

A Research on Characteristics of Internal Flow Based on the Gun Barrel Length and Ammunition Pressure. (포신 길이와 탄약 압력에 따른 포신 내부 유동 특성 연구)

  • Jung, Hee-Chur;Kim, Kyoung-Rok;Kang, Yo-Han;Ban, Young-Woo;Jung, Duck-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.513-520
    • /
    • 2018
  • This research concerns the characteristics of tank barrel inner flow according to the barrel length and the pressure of ammunition when fired. By analyzing the flow characteristics of the bore evacuator according to barrel length and ammunition pressure regarding ammunition design, it is possible to prevent the flareback phenomenon that may occur during ammunition operation. Through bore evacuator flow analysis by barrel length and ammunition pressure, we identified key design factors concerning barrel and ammunition compatibility including speed, accuracy, penetration performance and range. Test results found if barrel length is long and ammunition pressure is low, bore evacuator operation time is slow. Therefore, there is a high probability that propellant gas will enter the battle vehicle. Therefore, the correlation analysis method of bore evacuator flow characteristics based on barrel length and ammunition pressure is considered as a primary method to improve operational performance. When designing new ammunition, the correlation analysis method will be used to determine ammunition weight and select the propellant pressure.

Effects of Fire Curtain and Forced Smoke Ventilation on Smoke Spread to Auditorium in Stage Fire of Theater (공연장 무대 화재 시 방화막과 강제 배연구가 객석으로의 연기 확산에 미치는 영향)

  • Kim, Jae Han;Kim, Duncan;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.28-36
    • /
    • 2017
  • In this work, the effects of fire curtain and forced smoke ventilation on smoke spread to auditorium in the stage fire of theater were investigated using the Fire Dynamics Simulator (FDS). For the stage of 31 m (Width)${\times}$34 m (Depth)${\times}$32 m (Height) in dimension, the fast growth fire condition with 10 MW of heat release rate was applied. The forced smoke ventilation was set based on the National Fire Safety Code (NFSC) and previous research. The gap distances between the fire curtain and proscenium wall was established to be 0 m and 0.5 m. When the fire curtain was attached completely to the proscenium wall without any gap, no smoke spread from the stage to the auditorium occurred, independent of forced smoke ventilation. When the gap distance between the fire curtain and proscenium wall was 0.5 m, the smoke layer in the stage descended to the lower height from the bottom than the case without the fire curtain, which was because the smoke spread to auditorium was impeded by the fire curtain. Under the same fire curtain condition, the case with the forced smoke ventilation led to decreasing the mass flow rate of outflow through the gap between the fire curtain and proscenium wall, as compared to the case without the forced smoke ventilation. Based on this study, it was confirmed that the fire curtain and forced smoke ventilation were the effective tools to hold down the smoke spread to the auditorium in the stage fire of theater.

Study on Flow and Smoke Behaviors on in Longitudinal Tunnel (장대 터널에서의 배연방식에 따른 기류 및 연기거동 연구)

  • Kim, Won-Tae;Choi, Man-Yong;Park, Jeong-Hak;Chae, Kyung-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1521-1527
    • /
    • 2009
  • This study is aimed to analyze the floe patterns and thermal characteristics by computer simulation under the variations of fire strength for the logitudinal tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Through the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get the faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation (도로터널 화재시 대배기구 환기방식에서의 배연 연구)

  • Jeon, Yong-Han;Han, Sang-Cheol;Yoo, Oh-Ji;Kim, Nam-Jin;Seo, Tae-Boem;Kim, Jong-Yoon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1244-1250
    • /
    • 2009
  • In this study it is intended to review the moving characteristics of smoke by performing visualization for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173\;m^3/s$, $236\;m^3/s$ for the distance of the smoke moving which can limit the distance to 250m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

  • PDF

Relationship between Temperature and Egg Development of Nannophya pygmaea Rambur (Odonata: Libellulidae), an Endangered Dragonfly in Korea (한국의 멸종위기종인 꼬마잠자리(Nannophya pygmaea Rambur: 잠자리과, 잠자리목) 알의 발육과 온도의 관계)

  • Kim, Dong-Gun;Hwang, Jeong-Mi;Yoon, Tae-Joong;Bae, Yeon-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.292-296
    • /
    • 2009
  • This study was conducted to estimate relationship between temperature and egg development of Nannophya pygmaea, an endangerd dragonfly species in Korea, using eight different temperature conditions (17, 20, 22, 25, 28, 30, 33, and $36^{\circ}C$). Eggs of N. pygmaea were collected from female adults inhabited a small wetland in Mungyeong-si, Gyeongsangbuk-do, Korea, in June 2007. As a result, hatching rates were 2.86, 17.09, 24.32, 39.67, 34.43, 40.57, 44.79, and 1.75% at 17, 20, 22, 25, 28, 30, 33, and $36^{\circ}C$, respectively. The nonlinear model of the temperature related to egg development was well fit to the modified Sharpe and DeMichele model. The derived lower developmental threshold temperature for egg hatching was $14.02^{\circ}C$(y=0.005988x-0.084, $r^2$=0.99), and the derived optimal development temperature was $30{\sim}35^{\circ}C$.

Effect of Limestone Particle Size on the performance of FGD system (석회석 입도에 따른 습식배연탈황 성능연구)

  • Lee, Kyeong-Woo;Hwang, Jae Dong;Woo, Kwangje;Jang, Gil Hong
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 2001
  • Limestone has been used as absorbent in the FGD(Flue Gas Desulfurization) system, the DeSOx system of thermal power plant. This study investigated the desulfurization characteristics of the two different limestones, 325mesh and 200mesh particle size. Experimental analysis showed that the dissolving rate of limestone became much slower as the particle size increased. But the desulfurization efficiency depended on the L/G(liquid/gas) ratio and slurry pH regardless of the limestone particle size. The quality of gypsum produced in the FGD process increased as the limestone particle size or the slurry pH decreased. To reduce the cost of absorbent, the mixed limestone which were composed of 200 and 325mesh limestone with 5 different ratios were tested.

  • PDF

The Characteristics of Desulfurization using Metal Oxides in a Fluidized Bed Reactor (금속산화물을 이용한 유동층반응기에서 배연탈황특성)

  • Park, Tae Sung;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.278-285
    • /
    • 1998
  • In a fixed bed reactor, adsorption capacity of $SO_2$ in simulated flue gases was investigated with NMO(natural manganese ore), composed of various metal oxides, iron ore and $CuO/{\gamma}-Al_2O_3$ as adsorbents. The experiment carried out in a fluidized bed reactor with variables such as gas velocity, temperature and particle size. Iron ore was excluded in the fluidized bed reactor experiment for the lower adsorption capacity. The adsorption of $SO_2$ in metal oxide is a typical chemisorption because the adsorption capacity of all adsorbents increased with temperature. The effect of particle size on the adsorption capacity was varied with the ratio, $U_o/U_{mf}$ and the difference of $U_o-U_{mf}$. $U_o$ is the gas velocity, $U_{mf}$ is the minimum fluidization gas velocity. $U_o/U_{mf}$ and $U_o-U_{mf}$ explain the behavior of the gas and solids in the fluidized bed reactor. From the performance equation of the fluidized bed reactor, kinetic reaction rate constants were obtained by the non-linear least square method. The adsorption capacity of NMO proved the potential use of $SO_2$ adsorbents.

  • PDF