• Title/Summary/Keyword: 배면 공동

Search Result 39, Processing Time 0.024 seconds

An Experimental Study for Void Lengths and Locations under Concrete Tunnel Lining using Radar Method (레이더법을 이용한 터널 배면 공동 영향특성 실험)

  • Park, Seok-Kyun;Kim, Dae-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.363-366
    • /
    • 2005
  • The radar method based non-destruction inspection stands in the spotlight of concrete tunnel lining due to the advantages of less restrictions of applicability, simpleness and quickness. However, in the case of utilizing at constructions, the decomposition ability is decreased because the effect of damping and dispersion is potent and the utilization of high frequency is difficult. In particular, it is very difficult to investigate the size and thickness of tunnel using the low frequency radar with low decomposition ability In this work, to resolve the above problems, the effect of arrangement between adjacent tunnels is investigated utilizing the low frequency radar and results are reported

  • PDF

Reflection Wave Property of Electromagnetic Radar according to Change of Depth and Thickness of Voids under Concrete Tunnel Lining (콘크리트 터널 라이닝 배면공동의 깊이 및 두께변화에 따른 전자파 레이더의 반사파 특성)

  • Park, Seok-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.789-792
    • /
    • 2004
  • This study aims to detect only voids and estimate the cross-sectional size and thickness of voids using radar. A new method based on radar image processing is carried out with various void sizes and depths. The regression relationship between void size which has different depth and the amplitude characteristics of the radar return is considered in a new method of this research. For the purpose of examining; this regression relationship, experiments with change of void depth, surface area and thickness were carried out. Finally, the threshold value for image processing which aims to represent only voids to be fitted size (width) can be obtained. As the results, a proposed method in this study has a possibility of detecting only voids and estimating void size and thickness with good accuracy.

  • PDF

Detection of the Cavity Behind the Tunnel Lining by Single Channel Seismic and GPR Method (GPR 및 단일채널 탄성파탐사에 의한 터널라이닝 배면공동 조사)

  • Shin, Sung-Ryul;Jo, Chul-Hyun;Shin, Chang-Soo;Yang, Seung-Jin;Jang, Won-Yil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.148-158
    • /
    • 1998
  • Determining the thickness if concrete lining and detecting of the cavity where is located behind tunnel lining plays an important role in the safety diagnosis of tunnel structure and the quality control. In this study, we made use of GPR and seismic method in order to find the cavity or flaw. Although GPR is very useful method in the concrete lining without rebar, it is difficult to detect the cavity in the reinforced concrete lining. We applied mini-seismic method to the reinforced concrete lining. The obtained seismic data was processed by means of seismic section in time domain and image section of power spectrum in frequency domain using Impact-Echo method as well. The proposed method can accurately show the location and depth of the cavity in the reinforced concrete lining.

  • PDF

A study on the structural behaviour of shotcrete and concrete lining by experimental and numerical analyses (숏크리트 및 콘크리트 라이닝의 역학적 거동에 관한 실험 및 수치해석적 연구)

  • 김재순;김영근
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.307-320
    • /
    • 1998
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause many problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. In this study, mechanical behaviour of a tunnel lining was examined by model tests and by numerical analyses. Especially the model test was examined for double linings including shotcrete and concrete lining. The model tests were carried out under various conditions taking different loading shapes, horizontal stresses, thicknesses of linings and double lining, vault opening behind the concrete lining and rock-like medium surrounding the lining. Due to horizontal stress, compressive stress prevailed on the lining. Thus the bearing capacity of the lining increased. The existence of a vault opening behind the concrete lining reduced the bearing capacity by the similar amount of reduction of concrete lining thickness. Rock-like medium cast around the side wall of the lining restrained the deflection of the lining, and the bearing capacity for cracking and failure increased vary much. In numerical analyses a algorithm which can analysis the double lining by introduction of interface element was developed. And the results of the numerical analyses were compared with the results of the model tests.

  • PDF

A Study on Assessment Techniques of Levee Safety (하천제방의 안전성 평가기법 연구)

  • Yoon Jong-Ryeol;Kim Jin-Man;Choi Bong-Hyuck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.111-116
    • /
    • 2005
  • 2-D and 3-D resistivity surveys were carried out at the Deok-In2 levee during the period of arid and rainy seasons to assess the waterproof effectiveness of sheet pile and grouting sections and detect the location of pipings. Inverted resistivity sections clearly indicated the boundaries of sheet pile and grouting sections and the locations of pipings observed at the ground surface. Besides, GPR survey was carried out to verify the rear cavity of culvert in levee which is thought to be the major cause of levee breakdown, But the quality of GPR data was very poor due to the steel reinforcements buried in the culvert. Because it is not easy to apply various geophysical surveys upon concrete structures, newly designed hydraulic response test was proposed to assess the continuity of rear cavity of culvert in this study.

  • PDF

A Case Study on Deformation Conditions and Reinforcement Method of Cavity behind the Lining of Domestic Old Tunnel (국내 재래식 터널의 변상현황과 배면공동 보강 사례연구)

  • Kim, Young-Muk;Lim, Kwang-Su;Ma, Sang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1343-1350
    • /
    • 2005
  • In this study, the whole deformation conditions of domestic old tunnels and reinforcement methods for deformation tunnels were investigated and analysed, and the present conditions, occurrence cause and reinforcement methods of cavity behind the tunnel lining were investigated and analysed comprehensively. The deformation causes of domestic old tunnels could be classified in three kinds : change of earth pressure operating tunnel ground, material problem of concrete lining, mistake of design and construction. As a result of analysis, the tunnel deformation was occurred by not specific cause but various cause As a result of investigation for 455 domestic tunnel data, more than 70% of the tunnel deformation was related to leakage and the other deformation cause also accompanied leakage mostly. An applied reinforcement method was related to leakage and flood prevention measures, but application of reinforcement method for boundary area between tunnel and ground and tunnel periphery which influence on the tunnel stability was still defective. The cavity of domestic old tunnel occupied about 16% of the total tunnel length and about 68% of cavity was located in the crown of tunnel, and besides, the occurrence cause of cavity was analysed to design, construction and management cause. The filling method for cavity using filling material was comprehensively appling to cavity behind tunnel lining.

  • PDF

A Study on Development of the Controlled Low-Strength and High-Flowable Filling Material and Application of the Backfilling in Cavities behind the Old Tunnel Lining (고유동 충전재의 개발과 노후 터널의 배면공동 뒤채움에 관한 연구)

  • Ma, Sang-Joon;Seo, Kyoung-Won;Bae, Gyu-Jin;Ahn, Sang-Cheol;Lim, Kyung-Ha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.177-184
    • /
    • 2002
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the cavities where exist behind the tunnel lining, through the tunnel safety inspections. These cavities were analysed to affect a stability of a running-tunnel seriously. This study is on the development of the controlled low-strength and flowable filling material which is able to apply to the cavity behind the tunnel lining. The major materials of backfilling developed are a crushed sand and a stone-dust which exists as a cake-state and is a by-product obtained in the producting process of aggregate. It is conformed with the design standard to the physical characteristics of backfilling. The backfilling material developed is designed to reduce the fair amount of cement. According to the designed compound ratio, it is carried out the laboratory tests such as a compressive strength and a chemical analyses and is applied to dilapidated old tunnel for an application assessment.

Evaluation of the Adhesion Stability According to the Backfilling Area of the Tile back of the Bathroom of an Apartment House (공동주택 욕실의 타일배면 뒤채움 피착면적에 따른 부착안정성 평가)

  • Kim, Bum Soo;Song, Je Young;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.14-15
    • /
    • 2021
  • Recently, the size of tiles used for bathroom walls in apartment houses is gradually increasing in size. The problem is that when these large-sized tiles are attached by the sticking method, due to the nature of the method, there is a concern about the stability of the attachment to the part (pupil) where the tile and the adhesive are not attached. The problem is serious as it leads to lawsuits in the outbreak court. In addition, it is urgent to verify the adhesion stability of the sticking method because secondary damage occurs due to a safety accident caused by the falling of the tile. Ministry of Land, Infrastructure and Transport [Investigation of defects in apartment houses, calculation of repair cost and defect determination criteria] ① The tile adhesion strength is 0.39N/mm2 or more and ② It is specified to fill 80% or more of the base area of the tile backside, but this is currently trendy. It is considered that large-sized tiles need to be verified from multiple angles, and as part of that, we intend to verify the adhesion stability according to the area to be attached to large-sized tiles.

  • PDF

A Study on the Expansion Joint of Concrete Lining and Duct in a Tunnel (터널 콘크리트 라이닝 및 공동구 신축이음 설치방안에 관한 연구)

  • Son, Moorak;Park, Yangheum;Park, Yunjae;Kim, Jaegyoun;Yoon, Jongcheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.39-50
    • /
    • 2015
  • The installation of the expansion joints in a tunnel concrete lining and duct would minimize the cracking at the location of structural shape and stiffness change, differential settlement, big temperature change, and so on. However, it is difficult to determine the required spacing of the expansion joint in a tunnel concrete lining and duct quantitatively because the spacing is influenced by temperature change, structure construction condition, ground-structure interaction, and etc. Nevertheless, a highway specification (Korea Expressway Corporation, 2012) or a road design manual (Ministry of Land, Transport and Maritime Affairs, 2010) specifies that the expansion joint spacing in a tunnel concrete lining should be installed uniformly smaller than 25 m from the tunnel portals to 50 m inside of a tunnel and elsewhre 20-60 m in a tunnel (because there is no specifcation for a duct it is assumed that a duct follows the specfication of lining). This specification results in several construction and economic problems in relation with a tunnel construction. Accordingly, in order to minimize the problems, this study analyzed both domestic and foreign design standards and specifications. In addition, field test, theoretical and numerical analyses were carried out in relation to the expansion joint in a tunnel lining and duct. The purpose of this study is to reestabilish a criterion for installing the expansion joint in a tunnel concrete lining and duct.

Evaluation of the Structural Performance of Tetragonal Lattice Girders (사각 격자지보의 구조 성능 평가)

  • Kim, Seung-Jun;Han, Keum-Ho;Won, Deok-Hee;Baek, Jung-Sik;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.267-278
    • /
    • 2012
  • In general, the H-shaped steel ribs or triangular lattice girders have been mostly used in constructing tunnels through the NATM construction method. The H-shaped steel rib has higher flexural and axial strength than the triangular lattice girder, but many unexpected gaps can occur in the concrete lining system after shotcreting if the H-shaped steel rib is used as the support system. To achieve better shotcreting quality, the triangular lattice girder was developed. However, in general, the triangle lattice girder has low flexural and axial strength. Likewise, the triangular lattice girder, which has circular sectional members, has so many fractures from welded points at the joints between the members. Finally, the new type of tetragonal lattice girder was developed to overcome those problems. In this study, the structural performance of the tetragonal lattice girders was evaluated through analytical and experimental studies. In the analytical studies, the four-point bending analysis, the traditional evaluation method to determine the flexural strength of the lattice girder, was performed. Moreover, the linear-elastic analysis and stability analysis of the arch structure made by the lattice girders were performed to measure structural performance. Experiments were likewise performed to compare the structural performances of the tetragonal girder with traditional triangular lattice girders.