• Title/Summary/Keyword: 배기 후처리 시스템

Search Result 52, Processing Time 0.02 seconds

Improvement of L-Lysine Productivity by Using Cell Fusion and Immobilized System (세포융합과 고정화 시스템을 이용한 L-Lysine의 생산성 향상)

  • Ryu, Beung-Ho;Kim, Hye-Sung;Roh, Myung-Hoon;Park, Bob-Gyu;Chung, Jong-Soon;Bai, Ki-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.154-163
    • /
    • 1989
  • This studies were designed to improve the productivity of L-lysine by protoplast fusion and immobilized system of fusants using strains of Brevibacterium flavum ATCC 21528, Brevibacterium lactofermentum ATCC 21086 and Corynebacterium glutamicum 820. Mutants were isolated with concentration method of $300{\mu}g/ml$ penicillin-G after treatment of $250{\mu}g/ml$ N-methyl-N-nitro-N-nitrosoguanidine. B. flavum $37-2(Hos^-,\;Kan^r,\;AEC^r)$, B. lactofermentum $6-2(Ile^-,\;Val^-,\;Str^r,\;AEC^r)$ and C. glutamicum 57-5$(Met^-,\;Thr^-,\;Rif^r,\;AEC^r)$ were isolated from mutants. Protoplasts were induced by being incubated with $500{\mu}g/ml$ lysozyme of lysis solution for 6 hr and the ratio of protoplast formation and regeneration were ranging from 97-99% and 33-37%, respectively. Fusion frequencies of fusants of BBFL 21, BCFG 37 and BCLG 59 were shown in the range from $1.25{\times}10^{-6}\;to\;5.83{\times}10^{-7}$ under the optimum conditions. The fusant BBFL 21 showed the highest productivity of $411.1\;ng/ml{\cdot}hr$ L-lysine in the lysine productivity broth at $30^{\circ}C$ for 72hr. In the immobilization systems, fusant BBFL 21 was employed in various polymer matrices such as sodium alginate, polyacrylamide, agar and ${\alpha}-carrageena$. The immobilization of sodium alginate showed the highest productivity of $413\;ng/ml{\cdot}hr$ L-lysine in the batch system. Continuous fermentation of immobilization system by using tube fermentor was produced the highest productivity $416.7\;ng/ml{\cdot}hr $ L-lysine under optimum condition.

  • PDF

A study on the emission characteristics of greenhouse gases according to the vehicle technology, fuel oil type and test mode (차량기술, 연료 유종 및 시험모드 특성에 따른 온실가스의 배출특성 연구)

  • Lee, Jung-Cheon;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.962-973
    • /
    • 2017
  • Concerns about an air pollution are gradually increasing at home and abroad. The automotive and fuel researchers are trying to reduce emissions and greenhouse gases of vehicles through a research on new engine designs and innovative after-treatment systems using clean fuels (eco-alternative fuel) and fuel quality improvements. In this paper, we stduy the emission characteristics of greenhouse gases on seven vehicles using gasoline, diesel, and LPG by legal test mode in domestic and abroad.(Urban mode, Highway mode, rapidly acceleration and deceleration, using air conditioner, low temperature condition) Regardless of fuels, most of the greenhouse gases tend to show the worst results in cold FTP-75 mode. In the case of A vehicles (2.0 MPI) and B vehicles (2.4 GDI) using a gasoline fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. But G vehicles(LPLi) have different emission characteristics from another vehicles. In the case of A vehicles (2.0 w/o DPF) and B vehicles (2.2 with DPF) using a diesel fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. However, the factor of F vehicles are in order of low temperature condition, using air conditioner, rapidly acceleration and deceleration. In conclusion, it will be an effective method to apply different technologies of emission reduction for each fuel.