• Title/Summary/Keyword: 배기 가스 재순환

Search Result 194, Processing Time 0.026 seconds

The Effects of Exhaust Gas Recirculation on Non-premixed Combustion (배기가스 재순환이 비예혼합 연소시스템에 미치는 영향)

  • Yu, Byeonghun;Kim, Jinsu;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.26-33
    • /
    • 2014
  • We examined the characteristics of $NO_x$ emission for CH4/air non-premixed flames using the exhaust gas recirculation(EGR) methods, which are the air-induced EGR(AI-EGR) and fuel-induced EGR(FI-EGR) methods. Our experimental results show that the $NO_x$ emission index($EI_{NOx}$) decreased with increasing EGR ratio. In the range needed to form a stable flame, the reduction rate of $EI_{NOx}$ for the FI-EGR method was approximately 29% when the EGR ratio was 20%, and the reduction rate for the AI-EGR method was approximately 28% with 25% of the EGR ratio. According to the flame structure based on numerical results, high temperature regions for the FI-EGR method were narrower and lower than those for the AI-EGR method at the same EGR ratio. Furthermore, based on the experimental results for swirl flames, the reduction rate of $EI_{NOx}$ for the FI-EGR method was approximately 49% with 15% of the EGR ratio, while the maximum reduction rate for AI-EGR method was approximately 45% with 25% of the EGR ratio. Consequently, we verified that the FI-EGR method was more effective than the AI-EGR method in reducing $NO_x$ emission for non-premixed flames with EGR. We expect that the results of this study will provide fundamental information relating to hybrid combustion systems, which can be used in the design of combustion systems in the future.

Evaluation of EGR applicability for NOx reduction in lean-burn LPG direct injection engine (초희박 LPG 직접분사식 엔진에서 질소산화물 저감을 위한 배기재순환 적용성 평가)

  • Park, Cheolwoong;Cho, Seehyeon;Kim, Taeyoung;Cho, Gyubaek;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.22-28
    • /
    • 2015
  • In order to keep the competitiveness of LPG fuel for transportation fuel, the difference in fuel consumption with gasoline and cost for an aftertreatment system should be reduced with continuous development of technology for LPG engine. In the present study, spray-guided type direct injection combustion system, whose configuration is composed of direct injector in the vicinity of spark plug, was employed to realize stable lean combustion. A certain level of nitrogen oxides($NO_x$) emits due to a locally rich mixture regions in the stratified mixture. With the application of EGR system for the reduction of $NO_x$, 15% of $NO_x$ reduction was achieved whereas fuel consumption and hydrocarbon emission increased. By the application of EGR, the combustion speed reduced especially appeared at initial flame development period and peak heat release rates and increasing rates for heat release rate decreased as EGR rate increased due to the dilution effect of intake air.

Numerical Investigation of Exhaust Gas Recirculation Effect under Boost Pressure Condition on Homogeneous Charge Compression Autoignition (HCCI엔진의 과급조건에서 EGR영향에 대한 수치해석적 연구)

  • Oh, Chung Hwan;Jamsran, Narankhuu;Lim, Ock Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.451-464
    • /
    • 2014
  • This study used numerical methods to investigates investigate the exhaust gas recirculation (EGR) effect under the condition of boost pressure condition on a homogeneous charge compression ignition (HCCI) combustion engine using numerical methods. The detailed chemical-kinetic mechanisms and thermodynamic parameters for n-heptane, iso-octane, and PRF50 from the Lawrence Livermore National Laboratory (LLNL) are were used for this study. The combustion phase affects the efficiency and power. To exclude these effects, this study decided to maintain a 50 burn point (CA50) at 5 CA after top dead center aTDC. The results showed that the EGR increased, but the low temperature heat release (LTHR), negative temperature coefficient (NTC), and high temperature heat release (HTHR) were weakened due by theto effect of the O2 reduction. The combined EGR and boost pressure enhanced the autoignition reactivity, Hhence, the LTHR, NTC, and HTHR were enhanced, and the heat-release rate was increased. also In addition, EGR decraeased the indicated mean effective pressure (IMEP), but the combined EGR and boost pressure increased the IMEP. As a results, combining the ed EGR and boost pressure was effective to at increase increasing the IMEP and maintaining the a low PRR.

Air-staging Effect for NOx Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass (국내 미이용 바이오매스 순환유동층 연소에서 NOx 저감을 위한 air-staging 효과)

  • Yoon, Sang-Hee;Beak, Geon-Uk;Moon, Ji-Hong;Jo, Sung-Ho;Park, Sung-Jin;Kim, Jae-Young;Seo, Myung-Won;Yoon, Sang-Jun;Yoon, Sung-Min;Lee, Jae-Goo;Kim, Joo-Sik;Mun, Tae-Young
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • Air emission charge for nitrogen oxide as a precursor of fine dust has been introduced and implemented within the country from 2020. Therefore, the development of economical combustion technology for NOx reduction has got more needed urgently. This study investigated the air-staging effect as a way to reduce the NOx during combustion of domestic unused forest biomass, recently possible to secure REC (Renewable Energy Certification) as a substitute for overseas wood pellets in a 0.1 MWth circulating fluidized bed combustion test-rig. Operating conditions were comparison with and without air-staging, the supply position of tertiary air (6.4 m, 8.1 m, 9.4 m in the combustor) and variation of air-staging ratio (Primary air:Secondary air:Tertiary air=91%:9%:0%, 82%:9%:9%, 73%:9%:18%). NO and CO concentrations in flue gas, profiles of temperature and pressure at the height of the combustion, unburned carbon in sampled fly ash and combustion efficiency on operating conditions were evaluated. As notable results, NO concentration with air-staging application under tertiary air supply at 9.4 m in the combustor reduced 100.7 ppm compared to 148.8 ppm without air-staging while, CO concentration increased from 52.2 ppm without air-staging to 99.8 ppm with air-staging. However, among air-staging runs, when tertiary air supply amount at 6.4 m in the combustor increased by air-staging ratio (Primary air:Secondary air:Tertiary air=73%:9%:18%), NO and CO concentrations decreased the lowest 90.8 ppm and 66.1 ppm, respectively. Furthermore, combustion efficiency at this condition was improved to 99.3%, higher than that (98.3%) of run without air-staging.