• Title/Summary/Keyword: 배기압력 상승률

Search Result 9, Processing Time 0.024 seconds

The Misfire Detection by the Exhaust Pressure Ascent Rate (배기 압력 상승률에 의한 실화 검출)

  • 김세웅;최미호;심국상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • This paper proposes a method to detect misfired cylinders by the exhaust pressure ascent rate. The misfire is generated by faults of electric system or faults of fuel delivery system. It is one of the abnormal combustions. Therefore, it increases the unburned hydrocarbon and the carbon monoxide and affects a bad influence to the 3-way catalyst. The misfire causes to decrease the power of the engine and increase the consumption of the fuel. Early detection and correction of the misfired cylinders can prevent these unusual phenomena. The misfired cylinders can be detected by the comparison of exhaust pressure ascent rate during each cycle. The exhaust pressure ascent rate is defined as pressure rise per time. Our experimental results showed that the proposed method is effective in the detection of the misfired cylinders on a gasoline engine regardless loads and revolutions of the engine.

The Analysis of the Pressure Fluctuation in the Exhaust System According to the Assistant Device Configuration (보조기구의 형상 변경에 따른 배기계에서의 압력 변동 분석)

  • Chung, Sung-Won;Sim, Kook-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.325-331
    • /
    • 2003
  • This paper described the characteristics of the exhaust pressure and proposed the assistant device for detection of misfired cylinder. Misfire, one of abnormal combustion, affects a bad influence of the 3-way catalyst and emits unburned hydrocarbon. Therefore, to prevent these unusual phenomena and eliminate the factor of the environmental pollution, early detection and correction of the misfired cylinder play a very important role. The configuration of assistant device was changed by length and diameter of pipe and analyzed with the install position on the exhaust system. Experimental results showed that the configuration of assistant device is not affected more than length and diameter of pipe and the assistant device is be effective in the detection of misfired cylinder on the gasoline engine.

  • PDF

Potential of Thermal Stratification and Partial Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines (HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 단위반응 수치 해석)

  • Lim, Ock-Taeck
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.21-28
    • /
    • 2009
  • The purpose of this study is to gain a better understanding of the effects of thermal stratification and partial fuel stratification on reducing the pressure-rise rate and emission in HCCI combustion. The engine is fueled with Di-Methyl Ether(DME) which has unique 2-stage heat release. Computational work is conducted with multi-zones model and detailed chemical reaction scheme. Calculation result shows that wider thermal stratification and partial fuel stratification prolong combustion duration and reduce pressure rise rate. But too wide partial fuel stratification increases CO and NOx concentration in exhaust gas, and decreases combustion efficiency.

  • PDF

Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics (화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.449-456
    • /
    • 2010
  • The HCCI engine is a prospective internal combustion engine with which high diesel-like efficiencies and very low NOx and particulate emissions can be achieved. However, several technical issues must be resolved before HCCI engines can be used for different applications. One of the issues concerning the HCCI engine is that the operating range of this engine is limited by the rapid pressure rise caused by the release of excessive heat. This heat release is because of the self-accelerated combustion reaction occurring in the engine and the resulting engine knock in the high-load region. The purpose of this study is to evaluate the role of thermal stratification and fuel stratification in reducing the pressure rise rate in an HCCI engine. The concentrations of NOx and CO in the exhaust gas are also evaluated to confirm combustion completeness and NOx emission. The computation is carried out with the help of a multizone code, by using the information on the detailed chemical kinetics and the effect of thermal and fuel stratification on the onset of ignition and rate of combustion. The engine is fueled with dimethyl ether (DME), which allows heat release to occur in two stages, as opposed to methane, which allows for heat release in a single stage.

A Study about the Effects of EGR Stratification on Reducing the Pressure RIse Rate of DME HCCI Combustion (EGR 성층화급기에 의한 DME HCCI 연소시의 압력 상승률 저감에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.895-904
    • /
    • 2011
  • Stratified charge has been thought as one of the ways to avoid a sharp pressure rise on HCCI combustion. The purpose of this study is to evaluate the potential of stratified charge for reducing PRR on HCCI combustion. The pre-mixture with thermal, mixing and EGR stratifications is charged in Rapid Compression Machine. After that, the pre-mixture is compressed and in that process, in-cylinder gas pressure and temperature are analyzed. Additionally numerical calculation with multi-zones modeling is run to know the potential of stratified charge for reducing PRR.

Effects of Suction Air Humidity on the Combustion and Exhaust Emissions Characteristics in Diesel Engine (디젤기관에 있어서 흡기습도 변화가 연소 특성과 배기배출물 특성에 미치는 영향)

  • 임재근;김동호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.421-426
    • /
    • 2000
  • A study on the combustion and exhaust emissions characteristics of diesel engine with various suction air humidity is performed experimentally. In this paper, suction air humidity is changed from RH 50% to RH 90%, the experiments are performed at engine speed 1800rpm, and main measured parameters are cylinder pressure, fuel consumption rate, CO, HC, NOx and Soot emissions etc. Increase of suction air humidity from RH 50% to RH 90% does not effect specific fuel consumption, decreases maximum pressure in cylinder, ratio of maximum pressure rise and net heat release, and delays ignition timing. Also, that increases CO and HC emissions, decreases NOx emissions, but does not constant in changing tendency on emission.

  • PDF

Fuel Injection Strategy for Optimized Performance in Heavy-Duty Diesel Engine (대형 디젤 엔진에서 최적 성능 도출을 위한 연료 분사 전략에 관한 연구)

  • Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.33-39
    • /
    • 2019
  • The improvement of emissions, fuel economy, and combustion noise is a primary target in the development of heavy-duty diesel engines. Multiple injection has been introduced as one of the most promising strategies for this goal. In this research, various multiple injection methods were applied to achieve the optimal strategy in terms of emissions, fuel economy, and combustion noise. In the case of one pilot injection, the smoke emission deteriorated, while the NOx emission was reduced. In the case of 2 pilot injections, the NOx and smoke emissions were reduced by 73% and 84%, respectively. In this case, the combustion noise was analyzed with the maximum pressure-rise rate, and the fuel economy was evaluated with the help of the indicated specific fuel consumption. A 15%:15% 2-pilot injection strategy accomplished improvements of 32.9% for NOx, 60.4% for smoke, 1.95% for fuel consumption, and 19.4% for combustion noise compared to the case of single injection. Based on the data, an optimal injection strategy will be developed for a greater operating range in future work.

Numerical Investigation of Exhaust Gas Recirculation Effect under Boost Pressure Condition on Homogeneous Charge Compression Autoignition (HCCI엔진의 과급조건에서 EGR영향에 대한 수치해석적 연구)

  • Oh, Chung Hwan;Jamsran, Narankhuu;Lim, Ock Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.451-464
    • /
    • 2014
  • This study used numerical methods to investigates investigate the exhaust gas recirculation (EGR) effect under the condition of boost pressure condition on a homogeneous charge compression ignition (HCCI) combustion engine using numerical methods. The detailed chemical-kinetic mechanisms and thermodynamic parameters for n-heptane, iso-octane, and PRF50 from the Lawrence Livermore National Laboratory (LLNL) are were used for this study. The combustion phase affects the efficiency and power. To exclude these effects, this study decided to maintain a 50 burn point (CA50) at 5 CA after top dead center aTDC. The results showed that the EGR increased, but the low temperature heat release (LTHR), negative temperature coefficient (NTC), and high temperature heat release (HTHR) were weakened due by theto effect of the O2 reduction. The combined EGR and boost pressure enhanced the autoignition reactivity, Hhence, the LTHR, NTC, and HTHR were enhanced, and the heat-release rate was increased. also In addition, EGR decraeased the indicated mean effective pressure (IMEP), but the combined EGR and boost pressure increased the IMEP. As a results, combining the ed EGR and boost pressure was effective to at increase increasing the IMEP and maintaining the a low PRR.

An Investigation of Effects of Fuel Stratification and Cooled EGR on DME HCCI Engine's Operating Ranges by Numerical Analysis (농도성층화와 Cooled EGR이 DME HCCI 엔진의 운전영역에 미치는 영향에 관한 수치해석)

  • Jeong, Dong-Won;Amarbayar, D.;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Homogeneous charge compression ignition (HCCI) engines have the potential to provide both diesel-like efficiency and very low emissions of nitrogen oxide (NOx) and particulate matter(PM). However, several technical issues still must be resolved before HCCI can see application. Among these, steep pressure-rise rate which leads to narrow operating range of HCCI engine continues to be a major issue. This work investigates the combination of two methods to mitigate the excessive pressure-rise rates at high power output, namely fuel stratification and Cooled exhaust-gas recirculation (Cooled EGR), after identifying the each effects to pressure-rise rate. When applying the fuel stratification to simulation, total fuelling width of 0.15 at BDC is set as a equivalent ratio difference based on the previous research. In order to simulate the effects of cooled EGR, $CO_2$ mole fraction in pre-mixture is changed ranging from 0 to 30%. DME which has a characteristic of two-stage ignition is used as a fuel.