• Title/Summary/Keyword: 배기구

Search Result 256, Processing Time 0.034 seconds

Vacuum Safety

  • Ju, Jang-Heon
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.49-58
    • /
    • 2015
  • 진공 배기 시스템에 위험한 환경을 초래할 수 있는 모든 가능성을 찾아 낼 수는 없지만 누적된 현장 경험과 연구 결과에 맞추어 최대한 필요한 안전 조치들을 취해야 한다. 진공 배기 시스템이나 그 구성품들에 대한 심각한 파손을 유발하는 공통적인 요인들은 발화성 물질의 점화나 진공 배기 시스템의 배기구 막힘에 의해 발생한다. 따라서, 진공 펌프와 진공 시스템의 안전한 가동과 사용을 위해서는 다음과 같은 것들을 반드시 준수하여야 한다. ${\blacksquare}$ 발화성, 폭발성 공정 물질을 사용하는 진공 배기 시스템은 정규 유지 보수 작업(PM) 후 첫 번째 배기 과정은 매우 천천히 진행하여 진공 배기 시스템 내부에 급격한 난류가 형성되지 않도록 해 주어야 한다. ${\blacksquare}$ 진공 배기 시스템 내에서 발화성 물질들의 농도가 발화 영역(flammable zone, potentially explosive atmosphere)에 들어가지 않도록 하여야 한다. 이를 위해서는 불활성 가스를 이용하여 진공 펌프와 진공 배기 시스템의 가동 예상 조건이나 고장 환경하에서 안전한 농도 이하로 희석시켜야 한다. ${\blacksquare}$ 진공 펌프와 진공 배기 시스템에 장착되어 사용되는 밸브 등의 기계적 부품들이나 공정에 사용되는 물질과 공정 부산물들(by-products)로 인하여 배관, 필터 배기구 등이 막히지 않도록 하여야 한다. ${\blacksquare}$ 공정에 사용되는 물질들, 특히 산소($O_2$), 오존 ($O_3$) 등의 산화제 농도가 높을 때는 오일 회전 배인 진공 펌프(Oil rotary vane vacuum pump)에 미네랄(mineral) 오일을 사용하지 말아야 하며, PFPE(Perfluoropolyether) 오일을 사용하여야 한다. 시판되는 진공 펌프 오일 중 비발화성(non-flammable)으로 표기된 오일이라고 하더라도 산화제(oxidant)의 농도가 체적비로 30 % 넘는 공정 환경에는 사용하지 말아야 한다. ${\blacksquare}$ 진공 펌프와 진공 배기 시스템에 의해 배기되는 물질들이 물($H_2O$)과 격렬하게 반응하는 경우는 물이 아닌 다른 냉각제를 사용하여야 한다. ${\blacksquare}$ 안전하지 않다고 판단되는 상황에서는 해당 전문가의 조언이나 해당 전문가의 직접적인 현장 도움을 통해 문제를 해결하여야 한다.

Analysis of Indoor Air-flow with Air Cleaners (공기청정기에 의한 실내기류 해석)

  • Kim, Young-Saeng;Mo, Jin-Yong;Lee, Jae-Kwon;Han, Jae-Oh
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.57-62
    • /
    • 2005
  • 본 연구는 공기청정기의 성능에 영향을 미치는 인자로서 홉입구, 배기구의 위치 및 형상, 그리고 실내 공간상 배치 등에 대해 수치해석에 의한 모사를 통하여 평가하였다. 해석방법으로는 먼저 유동장을 해석한 후 고정된 유동장 내에서의 먼지 입자의 거동을 검토하였다. 배기구 위치에 의한 성능해석 결과는 배기구를 상면에 위치하게 할 경우 양 측면에 위치한 구조보다 우수한 성능을 나타내었으며, 설치위치에 대한 성능해석 결과는 제한적이나 현관 옆에 설치할 경우 해석된 두 가지 모델 모두 우수한 성능을 나타내었다.

  • PDF

Study on Modification of Inside Environment in Windowless Weaning Piglet House (무창이유자돈사의 내부 환경 개선에 관한 연구)

  • Lee, Seung-Joo;Gutierrez, W.M.;Kim, Bong-Sik;Han, Jin-Young;Chang, Dong-Il;Chang, Hong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.150-155
    • /
    • 2008
  • This study was carried out to determinate the location and the number of air inlet and outlet, optimum air inlet velocity for effective ventilation in windowless weaning piglet house($2.90(W){\times}9.90(L){\times}2.80(H)$ m) by CFD(Computation Fluid Dynamics) simulation. The weaning piglet house for this experiment was consisted of 11 air inlets and 9 outlets, modified and simulated using CFD code, FLUENT. The simulation result for the original weaning piglet house, which was not modified, showed ununiform ventilation for each room. Therefore, for uniform ventilation, 4 air inlets and 1 outlet were completely closed, and 2 air outlets were partially closed. The simulation result for the modified weaning piglet house showed uniform ventilation for each room and the optimum air inlet velocity of 0.5 $m\;sec^{-1}$.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

The Variation of Air Temperature and Humidity of Rock Bed Storage for Solar-Heated Greenhouse in Summer Season (여름철 자갈축열 태양열 온실의 축열층 온.습도 변화)

  • 이석건;이종원;이현우;김길동
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2000.10b
    • /
    • pp.128-131
    • /
    • 2000
  • 자갈축열 태양열 온실에 있어 여름철 냉방에너지의 효과적인 절감 방안을 모색하고자 축열 및 배기시스템의 작동방식을 다르게 하여 주ㆍ야간 축열과 방열시 자갈축열층의 온습도환경을 분석한 결과를 요약하면 다음과 같다. 1. 주간에 외기온이 28.5$^{\circ}C$-35.3$^{\circ}C$범위에서 변화할 때 자갈축열층내로 유입되는 공기의 온도는 30.5$^{\circ}C$-36.2$^{\circ}C$, 자갈축열층에서 온실내부로 유출되는 공기의 온도는 28.2$^{\circ}C$-30.1$^{\circ}C$, 축열층 내부온도는 27.4$^{\circ}C$-35.9$^{\circ}C$ 범위였다. 또한, 10시간 축열시 자갈축열층 내부온도는 측점에 따라 1.7$^{\circ}C$-7.$0^{\circ}C$의 온도상승이 있었으며 유입구에서 멀어질수록 축열층 온도는 낮게 나타났으며 온도상승 속도 또한 감소하는 경향으로 나타났다. 그리고, 야간에 축열시스템을 작동하지 않고 배기팬만을 작동하였을 경우, 외기온이 27.4$^{\circ}C$-34.4$^{\circ}C$범위일 때 자갈축열층 내부온도는 29.7$^{\circ}C$-34.9$^{\circ}C$(평균 31.4$^{\circ}C$)범위였으며 온실외부에 설치되어 있는 배기구와 배기팬의 영향으로 축열층 내부온도는 시간이 경과함에 따라 감소하는 경향으로 나타났으며 측점에 따라 2.2$^{\circ}C$-5.1$^{\circ}C$(평균 2.8$^{\circ}C$)의 온도하강 효과가 있는 것으로 나타났다. 2. 여름철 주간에 10시간 축열시 자갈축열층 내부습도는 측점에 따라 8.1%-26.3%의 감소현상이 있었다. 또한, 유입구에서 멀어질수록 축열층 습도는 높게 나타났으며 습도하강속도 또한 감소하는 경향으로 나타나 유입구에서 멀어질수록 외부습도의 영향을 적게 받는 것으로 분석되었다. 하지만, 야간에는 배기시스템의 영향으로 자갈축열층의 습도는 외기의 영향을 많이 받는 것으로 나타났다.

  • PDF

A study on the Improvement of Ventilation Performance in Apartment House According to the Location of Exterior Air-Vents (공동주택에서의 실외 급.배기구 위치에 따른 환기효율 향상 연구)

  • Park, Jin-Chul;Yu, Hyung-Kyu;Cha, Jin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.71-79
    • /
    • 2005
  • In this study, the ventilation performance of mechanical ventilation system in apartment House was analyzed through model test according to characteristics of air-vent. Then adequate interval of air-vent was suggested using computer simulation which will create comfort environment through improvement of ventilation performance in apartment house. The result of experiment with separation plate to prevent mixture of contaminated exhaust air with fresh supply air, the ventilation efficiency improved about 10%. The result of simulation with horizontal location of exterior air-vent, contaminated exhaust air is mixed regardless of interval variation. Consequently, mixture of the exhaust air can be prevented through locating the supply air vent on the top side and exhaust air vent on the lower side.

전기제품 PL 사례

  • Korea Electrical Products Safety Association
    • Product Safety
    • /
    • no.5 s.149
    • /
    • pp.48-49
    • /
    • 2006
  • 헤어드라이어의 코드 부근에서 화재가 발생해 카펫의 일부를 태움/오븐렌지의 배기구에서 화재가 발생해 벽을 태움/믹서기 안정성 결여에 의한 어린이 상해배 상 요구

  • PDF

Automotive Catalytic air Pollution Control System

  • Yeo, Gwon-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.72.2-72.2
    • /
    • 2013
  • 대기 환경의 오염에 크게 영향을 주는 자동차용 배기가스를 줄이기 위함과 강화되고 있는 배기가스 규제를 만족시키기 위한 최첨단의 기술을 개발하기 위하여 전세계 많은 연구진이 연구 개발을 진행하고 있는 상황에서, 가솔린 차량과 디젤차량분야 에서 배기가스 저감을위한 후처리 장치용 촉매 개발동향을 설명하고자 한다. 본 발표에서는 가솔린, 디젤 차량 적용 촉매의 기본 원리 및 규제 대응 신기술 개발 동향으로 TWC, DOC, DPF, SCR, LNT등의 기술과 후처리 시스템의 개발 동향을 설명한다.

  • PDF

Concerning the emission control system (배기처리 시스템에 대하여)

  • 이성열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.21-24
    • /
    • 1979
  • 오늘날 자동차배기의 대기오염공해는 큰 사회문제가 되었으며 선진제국은 이미 오래전부터 배 기정화를 시작하여 상당한 성과를 거두고 있으나 우리나라는 지금이 시작이 아닌가 생각된다. 배기정화는 자동차관계자가 해결해야 할 가장 큰 과제의 하나일 것이다. 자동차의 원동기로서 피스톤식 내연기관을 사용하는 한 최종적으로는 어떠하든 간에 배기처리를 할 필요가 있다. 따 라서 배기처리방법의 성공의 여부는 자동차용 내연기관의 운명이 걸려있다고도 할 수 있다. 이 러한 시점에 있어서 다른 사람 등이 해온 배기처리방법을 고찰해 보는 것도 결코 무의미한 것이 아니라 생각되기에 저자는 약 10년전에 발족한 일본자동차연구소 (JARI : JAPAN AUTOMOBILE RESEARCH INSTITUTE) 에서 시험제작을 하여 중점적으로 배기정화의 연 구를 해온 배기의 완전무해화장치 (JAPECS;JARI Perfect Emission Control System)를 소개하고 이것에 대한 고찰을 하고자 한다. JAPECS의 시험제작연구의 목적은 단지 자동차배기의 완전 무해화장치의 시험제작에 있는 것이 아니고 이 연구를 추진함으로써 1) 내연기관의 배기정화의 궁극적인 가능성을 추구할 수 있는 것과 2) 각 단계의 배기규제에 대처할 수 있는 가장 효과적이고 실용적인 배기처리장치의 개발을 위한 기술적인 검토가 될 수 있는 것으로 되어있다. 이 JAPECS project에서는 현재 사용되고 있는 모든 종류의 자동차엔진의 배기정화를 목표로 하고 있고 최초의 2년은 기초적인 검토에 중점을 두고 그후는 실용화에 중점을 두고 있다.

  • PDF