• Title/Summary/Keyword: 배관 누설

Search Result 146, Processing Time 0.022 seconds

Effect of Restraint of Pressure Induced Bending on Crack Opening Evaluation for Circumferential Through-Wall Cracked Pipe (원주방향 관통균열 배관의 균열열림 평가에 미치는 압력유기굽힘의 구속효과)

  • Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1873-1880
    • /
    • 2001
  • The effects of restraint of pressure induced bending(PIB) on crack opening for circumferential through-wall crack in a pipe were investigated. In this study, the elastic and elastic-plastic finite element analyses were performed to evaluate crack opening displacement(COD) for various restraint conditions and crack size. The results showed the restraint of PIB decreased crack opening for a given crack size and tensile stress, and the decrease in crack opening was considerable for large crack and short restraint length. A1so, the effect was more significant in tole results of elastic-plastic analysis compared with in the elastic analysis results. In the elastic-plastic analysis results, tole restraint effect was increased with increasing applied tensile stress corresponding to internal pressure. Additionally, the restraint effect on COD was independent on the variation in pipe diameter and decreased with increasing pipe thickness, and It depended on not total restraint length but shorter restraint length for non-symmetrically restrained.

An Analysis of Engine Failures Using Multivariate Data Analysis Method (다변량해석법을 이용한 기관고장분석)

  • 윤석훈
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.4
    • /
    • pp.198-203
    • /
    • 1987
  • The basis of all approaches to improve reliability of marine engines exists in analyzing the field data of troubles and failures on marine engines. This paper analyses the data of troubles and failures on marine engines by Principal Component Analysis Method, one of Multivariate Data Analysis Method. The total number of data investigated is 211 and the observation period is 9 years. The analyzed factors are categorized among five groups respectively; electric.automatic control equipments, auxiliary machinery, pipings, refrigerators.air conditioners, and main engine. The failures in main engine are discovered by a definite fact of disorder, on the contrary, the failures in auxiliary machinery, refrigerators and air conditioners are discovered by sensible judgement of the operators.

  • PDF

A Study on the Evaluation of the Pipe Fracture Characteristic (I) (실배관 파괴특성 평가에 관한 연구 (I))

  • Park, Jae-Sil;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.345-350
    • /
    • 2001
  • In order to perform elastic-plastic fracture mechanical analyses, fracture resistance curves for concerned materials are required. 1T-CT specimen was used to obtain fracture resistance curves. But the fracture resistance curve by the 1T-CT specimen was very conservative to evaluate the integrity of the structure. And fracture resistance curve was affected by the specimen geometry and crack plane orientation. The objective of this paper is to be certain the conservativeness of the fracture resistance curve by the 1T-CT specimen and to provide the additional safety margin. For these, the fracture tests using the real pipe specimen and standard 1T-CT specimen test were performed. 4-point bending jig was manufactured for pipe test and direct current potential drop method was used to measure the crack extension and length for pipe test. From the pipe and the 1T-CT specimen test results, it was observed that the J-integral of the 1T-CT specimen test at the crack initiation point was very small compare to that of the pipe specimen test.

  • PDF

New Engineering J and COD Estimation Methods for Axial Through-Wall Cracked Pipes (축방향 관통균열 배관의 새로운 탄소성 J-적분 및 COD 계산식)

  • Huh, Nam-Su;Park, Young-Jae;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.239-246
    • /
    • 2003
  • This paper proposes engineering estimation equations of elastic-plastic J and COD fur axial through-wall cracked pipes under internal pressure. Based on detailed 3-D FE results based on deformation plasticity, the plastic influence functions for fully plastic J and COD solutions are tabulated as a function of the mean radius-to-thickness ratio, the normalized crack length. and the strain hardening. Based on these results, the GE/EPRI-type J and COD estimation equations are proposed and validated against the 3-D FE results based on deformation plasticity. For more general application to general stress-strain laws or to complex loading, the developed GE/EPRI-type solutions are re-formulated based on the reference stress concept. Such a reformulation provides simpler equations for J and COD, which are then further extended to combined internal pressure and bending. The proposed reference stress based J and COD estimation equations are compared with elastic-plastic 3-D FE results using actual stress-strain data for Type 316 stainless steels. The FE results for both internal pressure cases and combined internal pressure and bending cases compare very well with the proposed J and COD estimations.

The Fault Detection of an Air-Conditioning System by Using a Residual Input RBF Neural Network (잔차입력 RBF 신경망을 사용한 냉방기 고장검출 알고리즘)

  • Han, Do-Young;Ryoo, Byoung-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.780-788
    • /
    • 2005
  • Two different types of algorithms were developed and applied to detect the partial faults of a multi-type air conditioning system. Partial faults include the compressor valve leakage, the refrigerant pipe partial blockage, the condenser fouling, and the evaporator fouling. The first algorithm was developed by using mathematical models and parity relations, and the second algorithm was developed by using mathematical models and a RBF neural network. Test results showed that the second algorithm was better than the first algorithm in detecting various partial faults of the system. Therefore, the algorithm developed by using mathematical models and a RBF neural network may be used for the detection of partial faults of an air-conditioning system.

Development of Intelligent Pig for Detecting Corrosion on Pipeline Using MFL Technology (MFL 기술을 이용한 천연가스 배관 부식 검사용 인텔리전트 피그 개발)

  • Cho, S.H.;Kim, Y.K.;Park, D.J.;Yoo, H.R.;Koo, S.J.;Park, S.S.;Kim, D.K.;Rho, Y.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.235-240
    • /
    • 2001
  • This paper introduces developed prototype intelligent pig which detects corrosion on pipeline by using Magnetic Flux Leakage technology. The 8 inch developed MFL(Magnetic Flux Leakage) pig is composed of 5 yokes which magnetize pipeline wall and 45 Hall sensors which detect MFL signal. The designed MFL modules are analyzed by using magnetic circuit method in order to confirm whether pipeline wall is fully saturated. A variety of artificial defects are manufactured on 8 inch diameter steel pipeline in order to acquire MFL signals. So leakage flux of the axial, radial and circumferential component was acquired as defects. The results of this paper show that design technique for 8 inch MFL pig can be applied to large diameter MFL pig and 0.5mm defect depth can be detected.

  • PDF

A Study on the Development of Unified Ball Valve and Polyethylene-Steel Pipe Via Virtual Manufacturing and Experimental Approach (가상생산 및 실험을 통한 폴리에틸렌관과 금속관 일체형 볼 밸브의 개발에 관한 연구)

  • Suh, Yeong-Sung;Yoo, Je-Hyuk;Ji, Min-Wuk;Song, Jeong-Hyun;Lee, Jae-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • In order to reduce the number of installation processes and the cost, a unified ball valve and polyethylene-steel pipe is proposed and tested. An integrated design approach is carried out such that a virtual manufacturing based on finite-element analysis is first performed in order to examine contact conditions under exaggerated temperature variations (${\Delta}T\;=\;60^{\circ}C$ and $-50^{\circ}C$ for summer and winter, respectively). From the final design configuration, it was predicted that the maximum contact pressures are 71 and 8.1 MPa for summer and winter, respectively, at relatively larger contact surface. Based on this observation, a prototype model is fabricated to go through an actual leakage test. The prototype pipe passed a hydrostatic strength test successfully, showing no leakage at even much higher (54 MPa) than the operational pressure (0.25 MPa).

Preliminary Leak-before Break Assessment of Intermediate Heat Transport System Hot-Leg of a Prototype Generation IV Sodium-cooled Fast Reactor (소듐냉각고속로 원형로 중간열전달계통 고온배관의 파단전누설 예비평가)

  • Lee, Sa Yong;Kim, Nak Hyun;Koo, Gyeong Hoi;Kim, Sung Kyun;Kim, Yoon Jea
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2016
  • Recently, the research and development of Sodium-cooled Fast Reactors (SFRs) have made progresses. However, liquid sodium, the coolant of an SFR, is chemically unstable and sodium fire can be occurred when liquid sodium leaks from sodium pipe. To reduce the damage by the sodium fire, many fire walls and fire extinguishers are needed for SFRs. LBB concept in SFR might reduce the scale of sodium fire and decrease or eliminate fire walls and fire extinguishers. Therefore, LBB concept can contribute to improve economic efficiency and to strengthen defense-in depth safety. The LBB assessment procedure has been well established, and has been used significantly in light water reactors (LWRs). However, an LBB assessment of an SFR is more complicated because SFRs are operated in elevated temperature regions. In such a region, because creep damage may occur in a material, thereby growing defects, an LBB assessment of an SFR should consider elevated temperature effects. The procedure and method for this purpose are provided in RCC-MRx A16, which is a French code. In this study, LBB assessment was performed for PGSFR IHTS hot-leg pipe according to RCC-MRx A16 and the applicability of the code was discussed.

Crack Initiation Life Analysis in Notched Pipe Under Cyclic Bending Loads (굽힘피로 하중을 받는 배관의 피로균열 발생수명 예측)

  • Gwak, Sang-Rok;Lee, Jun-Seong;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1528-1534
    • /
    • 2001
  • In order to improve Leak-Be(ore-Break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result.

Experimental Study of Operating Parameters for Pneumatic Control Valve in Abnormal Conditions (공기구동 제어밸브 비정상상태 운전변수에 관한 실험적 연구)

  • Kim, Yang-seok;Kim, Dae-woong;Lee, Byoung-oh;Jeoung, Rae-hyuk;Lee, Seung-ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.613-619
    • /
    • 2016
  • A pneumatic control valve performs a major role in controlling the flow of a system or the level of a key tank in many power plants, and its performance should be guaranteed during the plant's lifetime. Its operation starts by supplying air to the pneumatic actuator or by exhausting the air from the actuator. To control the valve position, the amount of air supply or exhaust is adjusted by a control loop where various accessaries are equipped. In this paper, air leakage in the air supply line, changes in the valve packing force, and false adjustments of zero and the span of the positioner are simulated and analyzed using a 2-in pneumatic valve with a position control loop including an I/P converter and positioner, where the valve position is controlled within ${\pm}2%$ of the control pressure at 67% opening position.