• Title/Summary/Keyword: 배관 균열

Search Result 176, Processing Time 0.02 seconds

Review of Acceleration Methods for Seismic Analysis of Through-Wall Cracked Piping from the Viewpoint of Linear Elastic Fracture Mechanics (지진 해석시 선형탄성파괴역학 측면에서의 관통 균열 배관에 대한 가진 방법론 검토)

  • Kim, Jong Sung;Kim, Yong Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1157-1162
    • /
    • 2014
  • Two acceleration methods, an effective force method (or inertia method) and a large mass method, have been applied for performing time history seismic analysis. The acceleration methods for uncracked structures have been verified via previous studies. However, no study has identified the validity of these acceleration methods for cracked piping. In this study, the validity of the acceleration methods for through-wall cracked piping is assessed via time history implicit dynamic elastic seismic analysis from the viewpoint of linear elastic fracture mechanics. As a result, it is identified that both acceleration methods show the same results for cracked piping if a large mass magnitude and maximum time increment are adequately selected.

원주방향응력이 매설배관의 축직각 외부균열에 미치는 영향

  • 황인현;이억섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.243-250
    • /
    • 2000
  • 배관을 지하에 매설할 경우 매설배관이 묻히는 깊은 도랑을 트랜치라 하는데 이 트랜치의 폭과 깊이의 칫수를 적절하게 결정하는 것은 매설배관의 건전성을 유지하는데 중요한 인자중의 하나이다. Watkins는 매설배관의 트랜치 폭에 대한 연구를 수행하여 최근 그 결과를 발표한바 있다. (1) Fig. 1에 트랜치와 배관의 단면도를 그리고 일반적으로 사용하는 기술적인 용어를 나타내었다.(중략)

  • PDF

The Fatigue Life Prediction of Defect in Pipeline Weldment (배관 용접부에 존재하는 결함의 피로수명 평가)

  • 김영표;김우식
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.460-465
    • /
    • 2001
  • 본고에서 피로균열성장에 대한 일반사항과 배관용접부 결함의 피로수명평가 방안에 대해서 알아보았다. 고압의 가연성 가스나 액체를 수송하는 배관이 피로에 의해 파괴되는 경우에는 엄청난 재산과 인적 손실을 발생시킬 수 있다. 따라서 배관운용회사들은 배관의 안정적인 운용을 위하여 다양한 환경에 노출되어있는 배관의 피로특성을 정확히 평가해야 한다.

  • PDF

Modification of the ASME Code Z-Factor for Circumferential Surface Crack in Nuclear Ferritic Pipings (원전 페라이트 배관내의 원주방향 표면균열에 대한 ASME Code Z-Factor의 수정)

  • Park, Y. H.;Y. K. Chung;W. Y. Koh;Lee, J. B.
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.185-196
    • /
    • 1996
  • The purpose of this paper is to modify the ASME Code Z-Factor, which is used in the evaluation of circumferential surface crack in nuclear ferritic pipings. The ASME Code Z-Factor is a load multiplier to compensate plastic load with elasto-plastic load. The current ASME Code Z-Factor underestimates pipe maximum load. In this study, the original SC. TNP method is modified first because the original SC. TNP method has a problem that the maximum allowable load predicted from the original SC. TNP method is slightly higher than that measured from the experiment. Then the new Z-Factor is developed using the modified SC. TNP method. The desirability of both the modified SC. TNP method and the new Z-Factor is examined using the experimental results for the circumferential surface crack in pipings. The results show that (1) the modified SC. TNP method is good for predicting the circumferential surface crack behavior in pipings, and (2) the Z-Factor obtained from the modified SC. TNP method well predicts the behavior of circumferential surface crack in ferritic pipings.

  • PDF

An Experimental Study on Failure Behavior of TP316 Stainless Steel Pipe with Local Wall Thinning and Cracking (국부 감육과 균열이 발생한 TP316 스테인리스강 배관의 파괴거동에 관한 실험적 연구)

  • Cheung, Jin Hwan;Kim, In Tae;Choi, Seock Jin;Choi, Hyung Suk;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.647-657
    • /
    • 2012
  • Although nuclear power plant piping system is designed conforming to design specifications, the piping systems are deteriorated with increase in service life. In this study, monotonic and cyclic loading tests were carried out on TP316 stainless steel pipe specimens, and the effect of local wall thinning and cracking on failure behavior was investigated. In the tests, 0%, 35% and 75% wall thinning and cracking of initial thickness were artificially introduced to inside elbow and straight pipe specimens, and internal pressures of 20MPa were applied to simulate real operation condition. From the test results, the effect of local wall thinning and cracking on failure mode, ultimate load, number of cycle and strain energy was presented, and maximum bending moment was compared with allowable bending moment calculated by ASME code.

Analysis for Defect Evaluation of Pipes in Nuclear Power Plant (원전 배관의 결함 평가를 위한 해석)

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3121-3126
    • /
    • 2013
  • The integrity evaluation of pipes in nuclear power plant are essential for the safety of reactor vessel, and integrity must be assured when flaws are found. Accurate stress intensity analyses and crack growth rate data of surface-cracked components are needed for reliable prediction of their fatigue life and fracture strengths. Fatigue design and life assessment are the essential technologies to design the structures such as pipe, industrial plant equipment and so on. The effect of crack spacing on stress intensity factor K values was studied using three-dimensional finite element method (FEM). For the case of cylinder under internal pressure, a significant increase in K values observed at the deepest point of the surface crack. Also, this paper describes the fatigue analysis for cracked structures submitted to bending loads.

Evaluation of Leak Rate Through a Crack with Linearly-Varying Sectional Area (선형적으로 변하는 단면적을 가진 균열에서의 누설률 평가)

  • Park, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.821-826
    • /
    • 2016
  • The leak before break (LBB) concept is used in pipe line design for nuclear power plants. For application of the LBB concept, leak rates through cracks should be evaluated accurately. Usually leak late analyses are performed for through-thickness cracks with constant cross-sectional area. However, the cross-sectional area at the inner pipe surface of a crack can be different from that at the outer surface. In this paper, leak rate analyses are performed for the cracks with linearly-varying cross-sectional areas. The effect of varying the cross-sectional area on leak rates was examined. Leak rates were also evaluated for cracks in bi-material pipes. Finally, the effects of crack surface morphology parameters on leak rates were examined.

가스배관 결함평가 현황

  • O, Gyu-Hwan;Yeom, Gyu-Jeong;Kim, U-Sik
    • Journal of the KSME
    • /
    • v.54 no.1
    • /
    • pp.38-42
    • /
    • 2014
  • 운영 중인 가스배관에는 매우 낮은 빈도이긴 하지만 부식, 기계적 손상, 내압, 토양하중, 차량하중, 지반침하, 열하중, 균열 등이 생길 수 있다. 안정적인 가스공급과 안전한 배관 운영을 위해서는 손상배관에 대한 건전성 평가가 필요하다. 평가 방법은 국내외 규격을 적용하거나 배관 운영회사에서 독자적인 건전성 평가방안을 적용하면 된다. 결함평가 방안은 고압 가스배관뿐만 아니라, 중저압 가스배관, 압력용기, 원자력 배관, 화학플랜트 배관 등에 필요한 사항이다.

  • PDF

Analysis of Dispersion Characteristics of Circumferential Guided Waves and Application to feeder Cracking in Pressurized Heavy Water Reactor (원주 유도초음파의 분산 특성 해석 및 가압중수로 피더관 균열 탐지에의 응용)

  • Cheong, Yong-Moo;Kim, Sang-Soo;Lee, Dong-Hoon;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.307-314
    • /
    • 2004
  • A circumferential guided wave method was developed to detect the axial crack on the bent feeder pipe. Dispersion curves of circumferential guided waves were calculated as a function of curvature of the pipe. In the case of thin plate, i.e. infinite curvature, as the frequency increases, the $S_0$ and $A_0$ mode coincide and eventually become Rayleigh wave mode. In the case of pipe, however, as the curvature increases, the lowest modes do not coincide even in the high frequencies. Based on the analysis, a rocking technique using angle beam transducer was applied to detect an axial defect in the bent region of PHWR feeder pipe. Based on the analysis of experimenal data for artificial notches, the vibration modes of each signal were identified. It was found that the notches with the depth of )0% of wall thickness can be detected with the method.

Plastic Limit Loads for Slanted Circumferential Through-Wall Cracked Pipes Using 3D Finite-Element Limit Analyses (3차원 유한요소 한계해석을 이용한 원주방향 경사관통균열 배관의 소성한계하중)

  • Jang, Hyun-Min;Cho, Doo-Ho;Kim, Young-Jin;Huh, Nam-Su;Shim, Do-Jun;Choi, Young-Hwan;Park, Jung-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1329-1335
    • /
    • 2011
  • On the basis of detailed 3D finite-element (FE) limit analyses, the plastic limit load solutions for pipes with slanted circumferential through-wall cracks (TWCs) subjected to axial tension, global bending, and internal pressure are reported. The FE model and analysis procedure employed in the present numerical study were validated by comparing the present FE results with existing solutions for plastic limit loads of pipes with idealized TWCs. For the quantification of the effect of slanted crack on plastic limit load, slant correction factors for calculating the plastic limit loads of pipes with slanted TWCs from pipes with idealized TWCs are newly proposed from extensive 3D FE calculations. These slant-correction factors are presented in tabulated form for practical ranges of geometry and for each set of loading conditions.