• Title/Summary/Keyword: 배관냉각기

Search Result 45, Processing Time 0.023 seconds

Screening Method for Flow-induced Vibration of Piping Systems for APR1400 Comprehensive Vibration Assessment Program (APR1400 종합진동평가를 위한 배관시스템의 유동유발진동 간이평가)

  • Ko, Do-Young;Kim, Dong-Hak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.599-605
    • /
    • 2015
  • The revised U.S. Nuclear Regulatory Commission(NRC), Regulatory Guide(RG) 1.20, rev.3 requires the evaluation of the potential adverse effects from pressure fluctuations and vibrations on piping and components for the reactor coolant, steam, feedwater, and condensate systems. Detailed vibration analyses for the systems attached to the steam generator are very difficult, because these piping systems are very complicated. This paper suggests a screening method for the flow-induced vibration of acoustic resonances and pump-induced vibration of the piping systems attached to the steam generator in order to conduct the APR1400 comprehensive vibration assessment program. This paper seeks to address the areas such as potential vibration sources, and methods to prevent the occurrence of acoustic resonances and pump-induced vibration of piping systems attached to the steam generator, for conducting the APR1400 comprehensive vibration assessment program. The screening method in this paper will be used to estimate the flow-induced vibration of the piping systems attached to the steam generator for the APR1400.

IRWST 배관내의 열수력적 현상 모델링

  • 김상녕;김융석;고종현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.596-602
    • /
    • 1998
  • 한국의 차세대 원자로 (Korean Next Generation Reactor; KNGR)에 처음 적용되는 격납건물내에 설치된 재장전수조 (In-Containment Refueling Water Storage Tank; IRWST)는 기존 재장전수조의 기능외에 주입모드에서 재순환 모드를 전환생략, 일차계통으로 방출된 고온, 고압 냉각수의 응축 및 냉각 격납용기 방사능 오염방지, 원자로 동공층수 등 여러 가지 추가 기능을 가진 한층 진보된 설계개념이다. 발전소 천이사고 시 발생하는 Pipe Clearing, 응축진동 현상(Condensation Oscillations), Chugging 등의 열수력 현상들이 방출증기의 유동 및 가속도와 관련해 항력과 응력, 압력진동 등을 일으켜 IRWST 구조물에 영향을 미칠 수 있기 때문에 IRWST를 처음으로 시도하는 우리 나라로서는 이와 관련된 제반현상에 대한 심도 깊은 연구가 요구된다. 따라서 본 연구에서는 원자력 발전소 과도로 인한 가압기 안전밸브(Pressurizer Safety Valve) 또는 안전감압밸브(Safety Depressurization Valve) 작동시 IRWST로 방출되는 유체로 야기되는 하중 예측 모델을 기존의 BWR의 응축수조(suppression Pool)에서 일어나는 각종 현상을 토대로 이론적으로 체계적으로 유도하여 이를 비교, 분석하였다.

  • PDF

A Study on the Optimization of Ventilation Fan Position and Flow Rate for a Turbine Building of a Power Plant (화력발전소 터빈 본관의 환풍기 위치 및 용량 최적화에 관한 연구)

  • Kim, T.K.;Ha, J.S.;Park, C.H.
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.86-93
    • /
    • 2016
  • The existence of high temperature equipment such as steam pipe, deaerator, steam storage tanks and main steam stop valves makes relatively higher workplace temperature in a power plant of the turbine building. In order to cool down the air temperature in the turbine building, the outside air flow with lower temperature passes through the window and the hotter air in the building is extracted to the outside by installing the ventilation fan on the roof. Nevertheless, higher temperature regions near the high temperature equipment still exist in the turbine building and additional fans for the temperature reduction in the higher temperature region should be examined for the optimal location and mass flow rate. The purpose of the present study is to suggest the optimized location and capacity of the additional ventilation fans for a comfortable working environment. From the present study, it has been elucidated that the additional ventilation fans might be located near the high temperature deaerator and it could reduce the mean temperature in the turbine building by $3.0^{\circ}C$ and the temperature near the deaerator could be reduced by $4.2^{\circ}C$.

Development of Dust Recycling System and Dust Cleaner in Pipe during Vitrification of Simulated Non-Radioactive Waste (모의 비방사성폐기물의 유리화시 발생 분진의 재순환처리장치 및 배관 내 침적분진에 의한 막힘 방지용 제진장치의 개발)

  • Choi Jong-Seo;You Young-Hwan;Park Seung-Chul;Choi Seok-Mo;Hwang Tae-Won;Shin Sang-Woon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.110-120
    • /
    • 2005
  • For utilizing vitrification to treat low and intermediate level waste, industrial pilot plant was designed and constructed in October 1999 at Daejon, Korea through the joint research program among NETEC, MOBIS and SGN. More than 70 tests were performed on simulated IER, DAW etc. including key nuclide surrogate(Cs, Co); this plant has been shown to vitrify the target waste effectively and safely, however, some dust are generated from the HTF(High Temperature Filter) as a secondary waste. In case of long term operation, it is also concerned that pipe plugging can be occurred due to deposited dust in cooling pipe namely, connecting pipe between CCM(Cold Crucible Melter) and HTF. In this regard, we have developed the special complementary system of the off-gas treatment system to recycle the dust from HTF to CCM and to remove the interior dust of cooling pipe. Main concept of the dust recycling is to feed the dust to the CCM as a slurry state; this system is regarded as of an important position in the viewpoint of volume reduction, waste disposal cost and glass melt control in CCM. The role of DRS(Dust Recycling System) is to recycle the major glass components and key nuclides; this system is served to lower glass viscosity and increase waste solubility by recycling B, Na, Li components into glass melt and also to re-entrain and incorporate into glass melt like Cs, Co. Therefore dust recycling is helpful to control the molten glass; it is unnecessary to consider a separate dust treatment system like a cementation equipment. The effects of Dust Cleaner are to prevent the pipe plugging due to dust and to treat the deposited dust by raking the dust into CCM. During the pilot vitrification test, overall performance assessment was successfully performed; DRS and Dust Cleaner are found to be useful and effective for recycling the dust from HTF and also removing the dust in cooling pipe. The obtained operational data and operational experiences will be used as a basis of the commercial facility.

  • PDF

Study and Survey of Operating Efficiency with Cool Storage System (빙축열냉방시스템의 운전효율에 관한 조사연구)

  • 손학식;심창호;김강현;김재철
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • The purpose of this study is to maintain high efficiency and reasonable use of cool thermal storage systems operated in the domestic building sector. As the result of efficiency test from the five types of operated cool storage systems on the condition that COP ranges are 2.6 to 3.4 during the day time and 2.1 to 3.0 during the night time and it decreased by more than 30% of rated COP given 3.8 to 3.0. The Analysis of cool storage rate shows that only 3 (21.4%) systems out of 15 buildings hold to over 40% capacity for its total capacity. To prevent the decrease in operating efficiency, it should correct the malfunction of 3-way valve and expansion valve and the mistake of control values for schedule program and increase cooling tower capacity. In order to improve piping line, it needs bypass brine line off refrigerator, separation of chilled water line with Ice Slurry system at day and night time and speed control of chilled and warm water pumps. This study does require the more studies on improving difficulty of increasing cooling load with Ice on Coil system, waterproofing with Ice Ball system, COP drop during the night time with Ice Lens, low operating temperature during the day time with Ice Slurry and increasing of Power loss due to hot gas de-icing with Ice Harvest in the future.

Study on the Steam Line Break Accident for Kori Unit-1 (고리 1호기에 대한 증기배관 파열사고 연구)

  • Tae Woon Kim;Jung In Choi;Un Chul Lee;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.186-195
    • /
    • 1982
  • The steam line break accident for Kori Unit 1 is analyzed by a code SYSRAN which calculates nuclear power and heat flux using the point kinetics equation and the lumped-parameter model and calculates system transient using the mass and energy balance equation with the assumption of uniform reactor coolant system pressure. The 1.4 f $t^2$ steam line break accident is analyzed at EOL (End of Life), hot shutdown condition in which case the accident would be most severe. The steam discharge rate is assumed to follow the Moody critical flow model. The results reveal the peak heat flux of 38% of nominal full power value at 60 second after the accident initiates, which is higher than the FSAR result of 26%. Trends for the transient are in good agreement with FSAR results. A sensitivity study shows that this accident is most sensitive to the moderator density coefficient and the lower plenum mixing factor. The DNBR calculation under the assumption of $F_{{\Delta}H}$=3.66, which is used in the FSAR with all the control and the shutdown assemblies inserted except one B bank assembly and of Fz=1.55 shows that minimum DNBR reaches 1.62 at 60 second, indicating that the fuel failure is not anticipated to occur. The point kinetics equation, the lumped-parameter model and the system transient model which uses the mass and energy balance equation are verified to be effective to follow the system transient phenomena of the nuclear power plants.lear power plants.

  • PDF

Analysis of Source Terms at Domestic Nuclear Power Plant with CZT Semiconductor Detector (CZT 반도체 검출기를 이용한 국내 원전 내 선원항 분석)

  • Kang, Seo Kon;Kang, Hwayoon;Lee, Byoung-Il;Kim, Jeong-In
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.14-20
    • /
    • 2014
  • A lot of radiation exposure for radiation workers who are engaged in Nuclear Power Plants, especially PWRs, have been caused during the outage by CRUD, such as $^{58}Co$, $^{60}Co$, in Reactor Coolant System. And therefore we need to know source terms to achieve optimization of protection for the radiation workers from radiation exposure at Nuclear Power Plants efficiently. This study analyzed source terms at domestic NPPs (PWRs) nearby Steam Generator with CZT semiconductor detector using by IN-VIVO method during the outage for the first time in the country. We checked difference for the detected source terms between old and new NPP. It was performed especially to see a change of source terms by water chemistry process as well. There was not any difference by water chemistry process both NPPs. The main source terms are $^{58}Co$ and $^{60}Co$ at all NPPs. $^{59}Fe$ only appears in the new NPP. $^{137}Cs$ and $^{95}Zr$ are shown in the old NPP. The fraction of $^{58}Co/^{60}Co$ in the new NPP is higher than the old NPP for increasing the specific activity of $^{60}Co$.

Study on the Safety Analysis on the Cooling Performance of Hybrid SIT under the Station Blackout Accident (발전소 정전사고 시 Hybrid SIT의 냉각성능 평가를 위한 안전해석에 관한 연구)

  • Ryu, Sung Uk;Kim, Jae Min;Kim, Myoung Joon;Jeon, Woo Jin;Park, Hyun-Sik;Yi, Sung-Jae
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.64-70
    • /
    • 2017
  • The concept of Hybrid Safety Injection Tank (Hybrid SIT) proposed by the Korea Atomic Energy Research Institute (KAERI) has been introduced for the purpose of application to the Advanced Power Reactor Plus (APR+). In this study, the SBO situation of the APR+ was analyzed by using the MARS-KS code in order to evaluate whether the operation of the Hybrid SIT has an effect on the cooling performance of the Reactor Coolant System (RCS). According to the analysis, when the actuation valve on the pressure balancing line (PBL) is opened, the Hybrid SIT's pressure rises rapidly, forming equilibrium with the RCS pressure; subsequently, a flow is injected from the Hybrid SIT into the reactor vessel through the direct vessel injection (DVI) line. The analysis showed that it is possible to keep the core temperature below melting temperature during the operation of a Hybrid SIT.

Effects of Several Cooling Methods and Cool Water Hose Bed Culture on Growth and Microclimate in Summer Season Cultivation of Narrowhead Goldenray 'Ligularia stenocephaia' (곤달비 여름재배 시 냉각방법과 냉수호스베드재배가 생육 및 미기상에 미치는 영향)

  • Kim, Ki-Deog;Lee, Eung-Ho;Kim, Won-Bae;Lee, Jun-Gu;Yoo, Dong-Lim;Kwon, Young-Seok;Lee, Jong-Nam;Jang, Suk-Woo;Hong, Soon-Choon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2011
  • This study was carried out to investigate the effects of several cooling methods such as water hose cooling, mist, fog and control on growth and microclimate, and to develop a simple nutriculture bed for production of fresh leaves of narrowhead goldenaray 'Ligularia stenocephala'. When the root-zone was cooled with 240 L/hr flow rate of $13^{\circ}C$ ground water using water hose, the temperature was lowered approximately by 2 to $3^{\circ}C$ than that of control. The growth of narrowhead goldenaray were favorable in the water hose cooling compared with the other cooling methods. Nutrient culture system having part cooling effect around plant canopy was developed. The system was composed of 15 cm diameter of water hose on side wall of beds, cooling hose, and expanded rice hull media as organic substrate. When cool water which the temperature changed in the range of 14 to $22^{\circ}C$ diurnally with 240 L/hr of flow rate through water hose, the air temperature around canopy and root-zone temperature were dropped by $0.5^{\circ}C$ and $3^{\circ}C$ compared with that of conventional styrofoam bed, respectively. These results showed that newly devised bed system using water hose was simple and economical for the production of high quality narrowhead goldenaray leaves. This system might be practically used both at summer and winter season for the cultivation of narrow head goldenaray by part cooling or heating around root-zone and plant canopy.

Design Point Operating Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 설계점 운영 특성)

  • Moon, Ilyoon;Moon, Insang;Kang, Sang Hun;Ha, Seong-Up;Lee, Soo Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.81-88
    • /
    • 2013
  • It was designed and tested at the design point that an oxidizer rich preburner for a staged combustion liquid rocket engine propelled by kerosene and LOx. The oxidizer rich preburner was designed as some of LOx injected from the mixing head was burned with kerosene and the rest of LOx injected from injection holes in the regenerative cooling chamber was vaporized by combustion gas. The preburner is operated at OF ratio of 60 and combustion pressure of 20 MPa. The Preburner has a honey-comb type mixing head with simplex swirl injectors, a turbulence ring improving combustion stability and uniformity of product gas temperature distribution, and a nozzle simulating the duct. With the combustion test results at the design point, the oxidizer rich preburner showed high combustion stability and uniformity of product gas temperature distribution.