• Title/Summary/Keyword: 배관길이

Search Result 129, Processing Time 0.026 seconds

Effects of Pipe Network Materials and Distance on Unused Energy Source System Performance for Large-scale Horticulture Facilities (배관 재질 및 길이에 따른 대규모 시설원예단지용 미활용 에너지 시스템의 성능 평가)

  • Lee, Jae-Ho;Yoon, Yeo-Beom;Hyun, In-Tak;Lee, Kwang Ho
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 2014
  • This study investigated the effects of pipe network materials and distance on system performance utilizing unused energy sources in large-scale horticulture facility. For this, the modeling was performed with a 100 m long and 100 m wide rectangular shaped glass house having an area of 1ha ($10,000m^2$) using EnergyPlus software. The heat sources considered were air source, geothermal heat, power plant waste heat, sea water heat, and river water. The temperature variation of the fluid with regard to pipe material and distance from the heat source and the resultant heat pump electricity consumptions were calculated. It turned out that the fluid temperature reaching the heat pump increased as the distance from the heat source increased in case of sea water and river water, which have higher temperatures than the surrounding soil, improving the heat pump efficiency. It was vice versa in case of the power plant waste heat. In addition, pipe material of PVC showed the smallest effect on the system performance variation due to the lowest thermal conductivity, compared to PB and HDPE.

Measurement of Skin Dose and Percentage Depth Does in Build-up Region Using a Fiber-optic Dosimeter (광섬유 방사선량계를 이용한 선량보강 영역에서의 심부선량 백분율과 피부 선량률 측정)

  • Cho, Dong-Hyun;Jang, Kyoung-Won;Yoo, Wook-Jae;Seo, Jeong-Ki;Heo, Ji-Yeon;Lee, Bong-Soo;Cho, Young-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.16-20
    • /
    • 2010
  • In this study, we have fabricated a fiber-optic dosimeter using an organic scintillator and a plastic optical fiber. The dosimeter measure skin dose and percentage depth dose in a build-up region for an incident high energy photon beam. The scintillating light generated in the organic sensor probe embedded in a solid water phantom is guided by 30 m plastic optical fiber to a light-measuring device such as a PMT or an electrometer. In addition, using a fiber-optic dosimeter or a GAFCHROMIC EBT film, skin dose and percentage depth dose in the build-up region are measured and compared.

Analysis of the Flow Rate for a Natural Cryogenic Circulation Loop during Acceleration and Low-gravity Section (극저온 자연순환회로의 가속 및 저중력 구간 유량 분석)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.43-52
    • /
    • 2019
  • Cryogenic propellant rockets utilize a natural circulation loop of cryogenic fluid to cool the engine inlet temperature before launch. The geometric information about the circulation system, such as length and diameter of the pipes and the heat input to the system, defines the mass flow rate of the natural circulation loop. We performed experiments to verify the natural circulation mass flow rate and compared the results with the analytical results. The comparison of the mass flow rate between experiments and numerical simulations showed a 12% offset. We also included a prediction of the natural circulation flow rate in the low-gravity section and in the acceleration section in the upper stage of the launch vehicle. The oxygen tank should have 100 kPa(a) of pressure in the acceleration section to maintain a high flow rate for the natural circulation loop. In the low-gravity section, there should be an optimal tank pressure that leads to the maximum natural circulation flow rate.

Suggestion of a Evaluation Method for Variation of Concrete Workability According to Pumping Condition through Lab-Scale Test (펌핑 조건에 따른 콘크리트 작업성 변화 실내 평가 방법 제안)

  • Lee, Jung-Soo;Jang, Kyong-Pil;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.413-420
    • /
    • 2020
  • In this study, a new lab-scale test equipment was developed to evaluate the variation of concrete workability after pumping. The equipment was designed to simulate the pressure and shearing applied to concrete during actual pumping. In order to examine the feasibility of evaluating variation of concrete workability through lab-scale test equipment, real-scale pumping tests and lab-scale tests were performed together. The design strength of concrete used in the both tests was 24, 35, and 60MPa, and the length of pipe used in pumping tests was 130, 304, and 518m. The lab-scale tests were performed in consideration of actual pumping conditions(pressure, shearing, and pumping duration time). The workability(slump or slum flow) of concrete was measured before test, after the pumping test, and after lab-scale test. In all tests, workability of all concrete mixtures decreased. In addition, the results of both tests were measured greatly similarly.

Variation of Samara, Seed, Germination and Growth Characteristics of Ulmus davidiana var. japonica Nakai Populations (느릅나무 자연집단(自然集團)의 시과(翅果), 종자(種子), 발아(發芽) 및 생장특성(生長特性) 변이(變異))

  • Song, Jeong-Ho;Jang, Kyung-Hwan;Lim, Hyo-In;Park, Wan-Geun;Bae, Kwan-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.226-231
    • /
    • 2011
  • Ulmus davidiana var. japonica is a deciduous tree species used for traditional medicine. This study was conducted to investigate the variation of samara, seed, germination and growth characteristics among populations and among individuals within five natural populations of U. davidiana var. japonica distributed in Korea. The ten characteristics of samara and seed, the three germination behaviors as well as the two growth traits were studied in samaras collected from total 32 trees. Statistical analysis of all characteristics showed that there were significant differences among populations as well as among individuals within populations. In this study, the mean characteristics of this species were 13.0 mm in samara length, 9.7 mm in samara width, 1.37 in samara index, 0.015 g in samara weight, 3.07 mm in samara stalk length, 3.85 seed length, 2.66 mm in seed width, 1.46 in seed index, 1.29 mm seed thickness, 0.0062 g in seed weigh, 34.8% in germination percentage, 8.6 days in mean germination time, 3.5 ea./day in gemination rate, 37.7 cm in height and 4.90 mm in root collar diameter. Especially, coefficients of variations in samara weight, germination percentage, germination rate, height and root collar diameter were relatively high (${\geq}30.0%$) compared to other traits. There was no significant relationship between population association and geographical distribution. The results of principal component analysis for 15 characteristics showed that primary four principal components (PC's) explained 100% of the total variation. The first PC accounted for 41.8% of the variability which correlated with morphological traits, the second PC accounted for 32.9% of the variability which correlated with germination behaviors and the third PC accounted for 16.3% of the variability which correlated with growth traits.

The Effects of Scale Growth Inhibition on Water Pipe using Frequency Driver (Frequency Driver를 이용한 냉온수관의 스케일 방지억제효과)

  • Jang, Mi-Jeong;Sung, Il-Wha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.258-266
    • /
    • 2011
  • Scale induced by hardness materials in water must be controled because of it can be result in remarkable damages of pipeline as well as water quality deterioration. Especially hot water system is one of scale management required facility as scale formation can be accelerated by temperature. The scale control performance of frequency driver (FD) was tested instead of existing methods such as chemical, physical and electromagnetic methods which needs chemicals and electric power. Three kinds of pipe coupons were submerged in test water with 500 mg/L of hardness for 33 days and XRD and SEM were analysed for comparing scale formation characteristics of these coupons. Calcite ($CaCO_3$) which came from hardness of water was formed on only cast iron pipe coupon and this coupon showed higher corrosion rate than copper and stainless steel pipe coupon. Hot water circulating system connected cast iron pipe with and without FD was operated with 300 mg/L of hardness water at $50^{\circ}C$ for monitoring of scale formation and water quality with and without FD. XRD showed that FD leaded to magnetite ($Fe_3O_4$) scale which is good scale for preventing corrosion than calcite and SEM image also indicated the scale control effect of FD. Scales of 16% on pipe joint, 14% on pipe length, and 42% on heat exchanger decreased with FD comparing scales of those parts without FD. From the results of water quality, FD reduced crystallization of hardness material without chemical reaction in water and it can indicate that FD is safe and proenvironmental technology for scale reduction.

A Study on Combustion Experiments of Multi Type Air-Conditioner Outdoor Units by Large Scale Calorimeter (라지스케일 칼로리미터에 의한 멀티시스템형 에어컨실외기의 연소실험에 관한 연구)

  • Min, Se-Hong;Bae, Yeon-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.168-177
    • /
    • 2011
  • The combustion test for real box of AC outdoor unit has been performed in this study in order to estimate the fire hazard in multi-system type of AC outdoor unit which is currently used for commercial use. The result showed that in test, there was explosion inside of AC outdoor unit, and flame erupted and fire spread through upper side grill. And then this fire burnt the combustibles such as wires, electronic control board, heat exchange copper plate and plastics etc inside the unit, refrigerant gas pipe was burst due to fire, and accelerated the explosion and flame eruption to outside while the refrigerant was erupting. It is found in this test that the maximum heat release rate of AC outdoor unit is 5,830 kW, the maximum internal temperature measured with infrared camera and thermocouple is $1,201^{\circ}C$, maximum ambient temperature is $881^{\circ}C$, and flame rose higher than about 5 m. It is concluded that the fire in AC outdoor unit cause fire to combustibles around the unit, and may give big damage by generating the secondary fire. It is expected that the result obtained from the test on the real object may be applied to fire realization of AC outdoor unit and estimation of fire spreading to the combustibles around in the future computer simulation.

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

Study on Conservation and Habitat Restoration Based on Ecological Diagnosis for Cymbidium kanran Makino in Jeju Island, Korea (한국 제주도 한란의 생태 진단에 기초한 보전 및 서식지 복원에 관한 연구)

  • Jung, Ji-Young;Shin, Jae-Kwon;Kim, Han-Gyeoul;Byun, Jun-Gi;Pi, Jung-Hun;Koo, Bon-Yeol;Park, Jeong-Geun;Suh, Gang-Uk;Lee, Cheul-Ho;Son, Sung-Won;Kim, Jun-Soo;Cho, Hyun-Je;Bae, Kwan-Ho;Oh, Seung-Hwan;Kim, Hyun-Cheol;Kang, Seung-Tae;Cho, Yong-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.11-21
    • /
    • 2016
  • Cymbidium kanran Makino is being threatened in its own habitats due illegal collecting and habitat changes by vegetation growth along historical landuse change. In this study, we established habitat restoration model for conservation of C. kanran based on ecological diagnosis. Through exploration to Jeju Island in 2014 and 2015, we identified 27 unknown habitats of C. kanran and in there, abiotic variables and vegetation structure and composition were quantified. Altitudinal distribution of C. kanran was between 200 m~700 m a.s.l. and compared to distribution in 2004, Area of Occupation (AOO) decreased at 82%. Specific habitat affinity was not observed by evenly found in mountain slope and valley and summergreen and evergreen broadleaved forests, but likely more abundant in valley habitats with higher soil and ambient moisture. Total of 96 individual of C. kanran was observed with an average density of $942.6individuals\;ha^{-1}$. The plants showed relatively short leaf length (average=$10.7cm{\pm}1.1cm$) and small number of pseudo bulbs ($1.2{\pm}0.2$). Flowering and fruiting individuals were not observed in field. C. kanran was classified into endangered plant species as CR (Critically Endangered) category by IUCN criteria. Phenotypic plasticity of C. kanran was likely support to sustain in more shaded habitat environment and recent habatat changes to closed canopy and low light availability may exhibit negatively effects to C. kanran's life history. Restoring C. kanran habitat should create open environment as grassland and low woody species density.