• 제목/요약/키워드: 배관검사

Search Result 241, Processing Time 0.027 seconds

Application of Continuous Indentation Technique for Reliability Evaluation in Power Plant Facilities (발전설비 주요배관 신뢰도 확보를 위한 연속압입시험 적용)

  • Park, Sang-Ki;Ahn, Yeon-Shik;Jung, Gye-Jo;Cho, Yong-Sang;Choi, Yeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.158-162
    • /
    • 2004
  • Reliability of welded structures in power plant facilities is very important, and their reliability evaluation requires exact materials properties. But, the conventional PQR (Procedure Qualification Record) can hardly reflect the real material properties in the field because the test is only done on specimens with simulated welding. Therefore, a continuous indentation technique is proposed in this study for simple and non-destructive testing of in-field structures. This test measures the indentation load-depth curve during indentation and analyzes the mechanical properties such as the yield strength, tensile strength and work hardening index. This technique has been applied to evaluate the tensile properties of the weldment in the main steam pipe and hot reheater pipe in power plants under construction and in operation.

Characterization of Acoustic Emission Signal for Welding Flaw and Stress Corrosion of SPPH Steels (SPPH강의 용접결함과 응력부식에 따른 음향 방출 신호의 특성)

  • Kim, Sung-Dai;Jung, Woo-Gwang;Lee, Jong-O;Jung, Yu-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • An investigation has been made on the relationship between characteristics of Acoustic Emission (AE) signal in welding flaw and the stress corrosion defect in-service for the high pressure pipe steel. In order to tackle the problem of welding flaw in high pressure pipe, specimens were made by the aid of the application of both corrosion liquid usage and a quenching method after local heating. The amplitude of signal was $60{\sim}75\;dB$ in the territory which is suspected for defect, and the specimens which only have welding flaw showed gradients of 0.034, 0.034, 0.035. Moreover, there is a certain increase in gradient even though the differences are very slight. That is, corrosion specimens showed new gradients of 0.040, 0.039, 0.041 which put welding flaw and corrosion mechanism together. After pressurizing 3 minutes, AE signal has been detected from welding flaw easily in each part of the section. It is possible to predict the occurrence and also prevent the damage of stress corrosion crack which has characteristics of cleavage fracture.

Fatigue Damage Evaluation of Cr-Mo Steel with In-Situ Ultrasonic Surface Wave Assessment (초음파 시험에 의한 배관용 Cr-Mo강의 피로손상의 비파괴평가)

  • Kim, Sang-Tae;Lee, Hei-Dong;Yang, Hyun-Tae;Choi, Young-Geun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • Although the ultrasonic method has been developed and used widely in the fields, it has been used only for measuring the defect size and thickness loss. In this study, the relationship between surface wave attenuation through micro-crack growth and variation of velocity under repeated cyclic loading has been investigated. The specimens are adopted from 2.25Cr-1Mo steel, which is used for power plant and pipeline system, and have dimensions of $200{\times}40{\times}4mm$. The results of ultrasonic test with a 5MHz transducer show that surface wave velocity gradually decreases from the point of 60% of fatigue life and the crack length of 2mm with the increasing fatigue cycles. From the results of this study, it is found that the technique using the ultrasonic velocity change is one of very useful methods to evaluate the fatigue life nondestructively.

  • PDF

The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures (원전 구조물 결함 탐지를 위한 음향방출 신호 처리 방안에 대한 기초 연구)

  • Kim, Jong-Hyun;Korea Aerospace University, Jae-Seong;Lee, Jung;Kwag, No-Gwon;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.485-492
    • /
    • 2009
  • The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection.

Design of Remote Field Eddy Current Sensor for Water-Wall Tube Inspection using Simulation (시뮬레이션을 활용한 유동층보일러 수냉벽튜브 검사용 원격장 와전류 탐상 센서 설계)

  • Gil, Doo Song;Kwon, Chan Wool;Cho, Yong-Sang;Kim, Hak-Joon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • Thermal power generation accounts for the highest percentage of domestic power generation, among which coal-fired boiler generation accounts for the highest percentage. Coal boilers generate harmful substances and fine dust during coal combustion and have a serious effect on air pollution. So, fluidized-bed boilers have been introduced as eco-friendly coal boilers. It uses a fluid medium which affect the combustion temperature of coal. Because of it fluidized-bed boilers emit less pollutants than original one. Water-wall tubes play an important role in this fluidized bed boiler. Due to the fluid medium, the wall damage is more severe than the existing boiler. However, there is no quantitative maintenance technique in Korea yet. Remote field eddy current testing is a non-destructive evaluation technique that is often used for inspection of inner and outer wall of tube. it can inspect with non-contact and high speed. However, it is an inspection that proceeds from inside the pipe, and the water-wall tube is not able to enter the interior. In this study, we designed and simulated an external remote field eddy current sensor suitable for water-wall tube of a fluidized - bed boiler using simulations. By obtaining a signal similar to the existing remote field eddy current test, the criteria for the external remote field eddy current sensor design can be presented.

UT Inspection Technique of Cast Stainless Steel Piping Welds Using Low Frequency TRL UT Probe (저주파수 TRL 탐촉자를 이용한 Cast Stainless Steel 배관 용접부 초음파탐상기법)

  • Shin, Keon-Cheol;Chang, Hee-Jun;Jeong, Young-Cheol;Noh, Ik-Jun;Lee, Dong-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • Ultrasonic inspection of heavy walled cast austenitic stainless steel(CASS)welds is very difficult due to complex and coarse grained structure of CASS material. The large size of anisotropic grain strongly affects the propagation of ultrasound by severe attenuation, change in velocity, and scattering of ultrasonic energy. therefore, the signal patterns originated from flaws can be difficult to distinguish from scattered signals. To improve detection and sizing capability of ID connected defect for heavy walled CASS piping welds, the low frequency segmented TRL Pulse Echo and Phased Array probe has been developed. The experimental studies have been performed using CASS pipe mock-up block containing artificial reflectors(ID connected EDM notch). The automatic pulse echo and phase array technique is applied the detection and the length sizing of the ID connected artificial reflectors and the results for detection and sizing has been compared respectively. The goal of this study is to assess a newly developed ultrasonic probe to improve the detection ability and the sizing of the crack in coarse-grained CASS components.

  • PDF

Implementation of Visualization System for Multi-sensor Data Analysis (다중 센서 데이터의 분석을 위한 가시화 시스템의 구현)

  • Kwon Hyuk-Don;Koo Sang-Ok;Jung Seung-Dae;Kim Bok-Dong;Jung Soon-Ki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.415-418
    • /
    • 2006
  • 다양한 데이터에 대해 정확한 분석이 요구되는 분야가 증가하면서, 데이터를 효율적으로 가시화하는 방법에 대한 요구도 증가하고 있다. 분석에 효율적인 가시화란 데이터의 특성을 잘 표현함으로써 분석가가 데이터를 직관적으로 이해할 수 있도록 도와주는 것을 말한다. 이를 통해 데이터를 분석하는 시간을 줄이고 정확한 결과를 얻는데 도움을 준다. 본 논문에서는 가스 배관을 검사하기 위한 Geometry 피그(PIG:Pipeline Inspection Gauge)와 MFL 피그로부터 얻어지는 데이터를 다양한 방법으로 가시화하고 분석에 효과적인 가시화와 시스템의 구현에 대해 다룬다. 각 피그의 다중 센서를 통해 얻어온 데이터를 Line graph, Pseudo Color Image, 3D Surface, Polar View, 3D Pipeline View와 같은 다양한 방법으로 가시화하고 view들 간의 동기화 및 사용자 지정 view 배치를 통해 빠르고 정확한 분석을 가능하게 하는 여러 가지 방법에 대해 설명한다.

  • PDF

Comparative Reliability of Nondestructive Testing for Weld: Water Wall Tube in Thermal Power Plant Boiler Case Study (용접부 비파괴 검사의 신뢰성 비교: 화력 발전소의 보일러 수냉벽 배관 사례연구)

  • Choi, Chang Deok;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.240-249
    • /
    • 2018
  • Purpose: The purpose of this research is to find which technique, between the PAUT (Phased array ultrasonic test) that has been used widely in practice and RT (Radiographic test) that was used widely in the past, has the higher reliability as a non-destructive testing of welding points in water wall tubes. Methods: To evaluated the reliability of non-destructive testing, eleven test pieces that were fabricated intentionally, which have the most frequently occurred defect types in water wall tubes and then both the PAUT and RT were performed on those eleven test pieces to compare their reliability. Results: The differences of type of defect, length are occurred due to the characteristics of nondestructive testing. The RT could not detect the lack of fusion defect type in specimen #4 and #8 while PAUT could not detect the lateral crack and 1 mm size small porosity in specimen #11. Conclusion: It is concluded that applying both the RT and PAUT result the best reliability rather than applying only one test method, if it is possible, in nondestructive testing of weld water wall tube in thermal power plant boiler case.

A study on the detection method of inner's crack of STS304 pipe using Ultrasonic Testing (초음파 검사법을 이용한 STS304 배관재 내부 균열 측정 방법에 대한 연구)

  • Hwang, Woong-Gi;Lee, Kyung-Min;Woo, Young-Kwan;Seo, Duck-Hee;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.415-418
    • /
    • 2011
  • Thermal fatigue is one of the life-limiting damage mechanisms in the nuclear power plant conditions. The turbulent mixing of fluids of different temperatures induces rapid temperature changes to the pipe wall. The successive thermal transients cause varying cyclic thermal stresses. These cyclic thermal stresses cause fatigue crack nucleation and growth similar to the cyclic mechanical stresses. The aim of this study was to fulfil the need by developing an real crack manufacturing method, which would produce realistic cracks. The test material was austenitic STS 304, which is used as pipelines in the reactor coolant system of a nuclear power plants. In order to fabricate thermal fatigue crack similar to realistic crack, successive thermal transients were applied to the specimen. Thermal transient cycles were combined with heating (60sec) and cooling cycle (30sec). And, In order to identify ultrasonic characteristic, it was performed the ultrasonic reflection measuring method for the fabricated specimen. From the results of ultrasonic reflection measuring testing, it was conformed that A-scan results(average 83% of real crack depth) for the TFC reference specimen was more enhanced NDT reliability than results(average 38% of real crack depth) for the EDM notch reference specimen.

  • PDF

Development of Inspection Methodology for a Nuclear Piping Wall Thinning Caused by Erosion Using Ultrasonic B-Scan Measurement Device (B-Scan 초음파 측정장비를 이용한 원전 배관 침식손상 검사법 개발)

  • Lee, Dae Young;Suh, Heok Ki;Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.89-95
    • /
    • 2012
  • U.S. Electric Power Research Institute (EPRI) has developed CHECWORKS program and applied it to power plant piping lines since some lines were ruptured by flow-accelerated corrosion (FAC) in 1978. Nowadays the CHECWORKS program has been used to manage pipe wall thinning phenomena caused by FAC. However, various erosion mechanisms can occur in carbon-steel piping. Most common forms of erosion are cavitation, flashing, liquid droplet impingement erosion (LDIE), and Solid Particle Erosion (SPE). Those erosion mechanisms cause pipe wall thinning, leaking, rupturing, and even result in unplanned shutdowns of utilities. Especially, in two phase condition, LDIE damages a wide scope of plant pipelines. Furthermore, LDIE is the major culprit to cause such as power runback by pipe leaking. This paper describes the methodologies that manage wall thinning and also predict LDIE wall thinning area. For this study, current properties of two-phase condition are investigated and LDIE areas are selected. The areas are checked by B-Scan method to detect the effect of wall thinning phenomena.