• Title/Summary/Keyword: 배경 차영상

Search Result 283, Processing Time 0.022 seconds

Algorithm of Generating Adaptive Background Modeling for crackdown on Illegal Parking (불법 주정차 무인 자동 단속을 위한 환경 변화에 강건한 적응적 배경영상 모델링 알고리즘)

  • Joo, Sung-Il;Jun, Young-Min;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • The Object tracking by real-time image analysis is one of the major concerns in computer vision and its application fields. The Object detection process of real-time images must be preceded before the object tracking process. To achieve the stable object detection performance in the exterior environment, adaptive background model generation methods are needed. The adaptive background model can accept the nature's phenomena changes and adapt the system to the changes such as light or shadow movements that are caused by changes of meridian altitudes of the sun. In this paper, we propose a robust background model generation method effective in an illegal parking auto-detection application area. We also provide a evaluation method that judges whether a moving vehicle stops or not. As the first step, an initial background model is generated. Then the differences between the initial model and the input image frame is used to trace the movement of object. The moving vehicle can be easily recognized from the object tracking process. After that, the model is updated by the background information except the moving object. These steps are repeated. The experiment results show that our background model is effective and adaptable in the variable exterior environment. The results also show our model can detect objects moving slowly. This paper includes the performance evaluation results of the proposed method on the real roads.

  • PDF

Object Tracking out for Video Monitoring System on Real Time (실시간 영상감시 시스템을 위한 객체 추적 방법)

  • Lee, Keun-Wang;Oh, Taek-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.214-216
    • /
    • 2006
  • 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소사각영역을 설정하고, 이를 통해 객체를 추적한다. 아울러 제안방법의 성능에 대한 실험결과를 기존 추적알고리즘과 비교, 분석하여 평가한다.

  • PDF

A Study of Object Extraction and Trace at Real Time Images (실시간 영상에서 객체 추출 및 추적에 관한 연구)

  • Jang, Jung-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.475-478
    • /
    • 2010
  • 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하고 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소사각영역을 설정하고, 이를 통해 객체를 추적한다.

  • PDF

Automatic Video Object Segmentation Using Effective Thresholding (효과적인 임계값을 이용한 자동영상 분할 기법)

  • 이지호;유홍연;홍성훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1976-1979
    • /
    • 2003
  • 본 논문에서는 연속영상에서 잡음과 객체가 잘 분할되지 않는 환경 내에 있는 객체를 자동으로 분할하는 차영상 기반 알고리즘을 제안하였다. 기존의 차영상 기반의 단일 임계간을 이용한 방식에는 잡음에 크게 영향을 받고 배경과 객체가 비슷한 밝기 값을 가지는 경우 잘 추출되지 않는 많은 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하고자 임계값을 설정하는 영역을 축소하여 잡음간섭의 최소화를 구성하였고 축소된 영역 내의 윤곽선정보를 이용하여 배경 밝기 값의 유사함에서 나오는 간섭을 최소화함으로써 정밀한 객체를 추출할 수 있었다.

  • PDF

Object Tracking Algorithm with Color Information of an Initial Object and the Difference Image (객체의 색상 정보와 차영상을 이용한 동영상 내 객체 추적 기법)

  • Ko, Min-Su;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.180-183
    • /
    • 2010
  • 본 논문에서는 객체의 색상 정보와 차영상을 이용한 동영상 내 객체 추적 기법을 제안한다. 제안하는 기법은 연속적은 프레임 간에 객체의 색상 정보의 변화가 크지 않다는 것을 가정하여 비슷한 색상 정보를 찾아 현재 프레임의 객체 영역을 얻는다. 입력한 이전 프레임의 초기 객체 정보를 사용하여 객체와 배경의 색상 히스토그램을 구한다. 또한 현재 프레임과 이전프레임의 차영상을 생성한다. 마지막으로 객체와 배경의 색상 히스토그램과 차영상을 사용하여 현재 프레임의 각 화소를 객체 또는 배경 영역으로 구분하여 현재프레임의 객체 영역을 얻는다. 생성된 현재 프레임의 객체 정보는 다음 프레임의 객체 추적에서 다시 사용한다.

  • PDF

Object Detection Method for The Wild Pig Surveillance System (멧돼지 감시 시스템을 위한 객체 검출 방법)

  • Kim, Dong-Woo;Song, Young-Jun;Kim, Ae-Kyeong;Hong, You-Sik;Ahn, Jae-Hyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.229-235
    • /
    • 2010
  • In this paper, we propose a method to improve the efficiency of the moving object detection in real-time surveillance camera system. The existing methods, the methods using differential image and background image, are difficult to detect the moving object from outside the video streams. The proposed method keeps the background image if it doesn't be detected moving object using the differential value between a previous frame and a current frame. And the background image is renewed as the moving object is gone in a frame. To decide people and wild pig, the proposed system estimates a bounding box enclosing each moving object in the detecting region. As a result of simulation, the proposed method is better than the existing method.

A Comparative Study on Background Generation Methods (배경생성 방법 비교)

  • 송섭홍;권영탁;소영성
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.157-160
    • /
    • 2001
  • 영상검지기에서 차량 탐지를 위해 사용하는 방법은 배경차이(Background Differencing), 장면차이(Frame Differencing), 공간차이(Spatial Differencing), 밝기값 비교(Gray-Level Comparison) 등이 있다. 이 방법들중에서 배경차이 방법은 기준이 되는 배경영상과 입력영상의 차를 구해 차량을 탐지하는데 대부분의 영상검지기에서 채택 되어 사용되는 방법이다. 배경차이 방법에서 가장 중요한 것은 매번 기준이 되는 배경영상을 정확하게 구하는 것 인데, 영상내 차량의 흐름이 원활하다면 어느 배경생성 방법을 사용해도 좋은 결과를 얻을 수 있지만 차량의 정체 가 심하거나 장기간 지속되면 좋은 배경을 생성하기가 어렵다 특히 교차로의 경우 진행중인 차량 및 신호 대기중 인 차량이 통시에 존재하므로 배경생성에 더욱 어려움을 겪게된다. 이상에서 제시된 세 가지 배경생성 방법을 고속도로와 교차로에서 적용시켜 각 배경영상 생성 방법을 비교 분석한다.

  • PDF

An Object Movement Detecting System using Light Removal (조명 제거를 이용한 객체 움직임 탐지 시스템)

  • Goo, Eun-Jin;Heo, Woo-Hyung;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.19-22
    • /
    • 2013
  • 본 논문은 조명을 제거한 차영상을 이용하여 객체의 움직임을 탐지하는 시스템을 제안한다. 먼저, 입력받은 RGB영상을 Lab영상으로 변환하여 L채널 영상을 분리해낸다. 분리해낸 L채널 영상을 반전시켜 역 조명 영상을 만들어 원 영상과 합성한다. 그 후 만들어진 영상에 모폴로지 기법을 적용하고, 잡음 제거를 위해 크기 필터링을 사용한다. 그리고 배경 영상과 현재 영상의 차영상을 이용하여 객체의 움직임을 탐지한다. 실험 결과 제안된 시스템은 조명이 밝거나 어두워 영상 분석이 힘든 경우, 제대로 분석되지 않은 배경과 전경에 있어서 더욱 효과적으로 작동함을 증명한다.

  • PDF

Design and Implementation of the Security System for the Moving Object Detection (이동물체 검출을 위한 보안 시스템의 설계 및 구현)

  • 안용학;안일영
    • Convergence Security Journal
    • /
    • v.2 no.1
    • /
    • pp.77-86
    • /
    • 2002
  • In this paper, we propose a segmentation algorithm that can reliably separate moving objects from noisy background in the image sequence received from a camera at the fixed position. Image segmentation is one of the most difficult process in image processing and an adoption in the change of environment must be considered for the increase in the accuracy of the image. The proposed algorithm consists of four process : generation of the difference image between the input image and the reference image, removes the background noise using the background nois modeling to a difference image histogram, then selects the candidate initial region using local maxima to the difference image, and gradually expanding the connected regions, region by region, using the shape information. The test results show that the proposed algorithm can detect moving objects like intruders very effectively in the noisy environment.

  • PDF

Image Separation of Talker from a Background by Differential Image and Contours Information (차영상 및 윤곽선에 의한 배경에서 화자분리)

  • Park Jong-Il;Park Young-Bum;Yoo Hyun-Joong
    • The KIPS Transactions:PartB
    • /
    • v.12B no.6 s.102
    • /
    • pp.671-678
    • /
    • 2005
  • In this paper, we suggest an algorithm that allows us to extract the important obbject from motion pictures and then replace the background with arbitrary images. The suggested technique can be used not only for protecting privacy and reducing the size of data to be transferred by removing the background of each frame, but also for replacing the background with user-selected image in video communication systems including mobile phones. Because of the relatively large size of image data, digital image processing usually takes much of the resources like memory and CPU. This can cause trouble especially for mobile video phones which typically have restricted resources. In our experiments, we could reduce the requirements of time and memory for processing the images by restricting the search area to the vicinity of major object's contour found in the previous frame based on the fact that the movement of major object is not wide or rapid in general. Specifically, we detected edges and used the edge image of the initial frame to locate candidate-object areas. Then, on the located areas, we computed the difference image between adjacent frames and used it to determine and trace the major object that might be moving. And then we computed the contour of the major object and used it to separate major object from the background. We could successfully separate major object from the background and replate the background with arbitrary images.