• Title/Summary/Keyword: 배경 차감 기법

Search Result 6, Processing Time 0.023 seconds

Extraction of Region of Interest for Individual Object from a Foreground Image (전경영상에서 단일 객체의 관심 영역 추출을 위한 방법)

  • Yang, Hwiseok;Hwang, Yonghyeon;Cho, We-Duke;Choi, Yoo-Joo
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.478-481
    • /
    • 2010
  • 컴퓨터 비전에서 객체의 인식, 추적에 앞서 배경으로부터 전경을 분리하는 배경차감 기법과 분리된 전경에 대한 관심 영역(ROI)을 추출하는 것은 일반적인 방법이다. 하지만 전경을 정확히 분리하지 못하면 개별 객체의 관심영역(ROI) 역시 잘못 추출되는 문제가 발생된다. 본 논문에서는 정확하지 않은 전경 분리로 부터 발생되는 개별 객체에 대한 분산된 관심영역을 병합하는 방법을 제안한다. 본 방법은 배경과 분리된 전경에서 한 객체의 일정 거리 이내에 있는 다른 객체를 가상으로 병합하는 단계, 워터쉐드 분할 알고리즘을 적용하는 단계를 거쳐 다시 블럽 레이블링을 수행한다. 제안 방법을 통하여 배경 모델에서 분리된 개별 객체의 병합된 관심영역을 제공한다. 실험에서 기존의 일반적인 블럽 레이블링 방법만을 적용하여 추출한 전경영역과 제안하는 방법에 의한 전경영역을 비교하여 배경 모델에서 분리된 개별 객체의 관심영역이 효과적으로 추출되는 것을 보인다.

A Robust Hand Recognition Method to Variations in Lighting (조명 변화에 안정적인 손 형태 인지 기술)

  • Choi, Yoo-Joo;Lee, Je-Sung;You, Hyo-Sun;Lee, Jung-Won;Cho, We-Duke
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.25-36
    • /
    • 2008
  • In this paper, we present a robust hand recognition approach to sudden illumination changes. The proposed approach constructs a background model with respect to hue and hue gradient in HSI color space and extracts a foreground hand region from an input image using the background subtraction method. Eighteen features are defined for a hand pose and multi-class SVM(Support Vector Machine) approach is applied to learn and classify hand poses based on eighteen features. The proposed approach robustly extracts the contour of a hand with variations in illumination by applying the hue gradient into the background subtraction. A hand pose is defined by two Eigen values which are normalized by the size of OBB(Object-Oriented Bounding Box), and sixteen feature values which represent the number of hand contour points included in each subrange of OBB. We compared the RGB-based background subtraction, hue-based background subtraction and the proposed approach with sudden illumination changes and proved the robustness of the proposed approach. In the experiment, we built a hand pose training model from 2,700 sample hand images of six subjects which represent nine numerical numbers from one to nine. Our implementation result shows 92.6% of successful recognition rate for 1,620 hand images with various lighting condition using the training model.

The Application of Unmanned Aerial Photograpy for Effective Monitoring of Marine Debris (해안표착물의 효율적인 모니터링을 위한 무선 조정 항공기 촬영기법의 적용)

  • Jang, Seon-Woong;Lee, Seong-Kyu;Oh, Seung-Yeol;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2011
  • This study proposed detection method of Marine debris using unmanned aerial photography. For unmanned aerial photography, a RC(Radio Control) helicopter which has good movability and economics was used. To a camera mounting, a gimbal equipment was attached to the bottom of the RC helicopter. The gimbal equipment is very useful because it is not seriously affected by vibration and rolling. In addition, we invented that digital image processing algorithm using Matlab program for detection of marine debris from photographs. Particularly, background subtraction in invented algorithm was applied. As a result, marine debris of a variety of forms from different sand states of coast were reliably detected. In the future, monitoring using proposed method was expected to contribute that the solution to representative problem of monitoring area selecting and estimate the total litter mass over the beach. Moreover, It is considered a greater application possibility to marine environmental observations.

Head Detection based on Foreground Pixel Histogram Analysis (전경픽셀 히스토그램 분석 기반의 머리영역 검출 기법)

  • Choi, Yoo-Joo;Son, Hyang-Kyoung;Park, Jung-Min;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.179-186
    • /
    • 2009
  • In this paper, we propose a head detection method based on vertical and horizontal pixel histogram analysis in order to overcome drawbacks of the previous head detection approach using Haar-like feature-based face detection. In the proposed method, we create the vertical and horizontal foreground pixel histogram images from the background subtraction image, which represent the number of foreground pixels in the same vertical or horizontal position. Then we extract feature points of a head region by applying Harris corner detection method to the foreground pixel histogram images and by analyzing corner points. The proposal method shows robust head detection results even in the face image covering forelock by hairs or the back view image in which the previous approaches cannot detect the head regions.

An Endpoint Detection Algorithm for Noise Speech using Band Energy (대역에너지를 이용한 잡음음성의 끝점검출 알고리즘)

  • Park Ki-Sang;Suk Su-Young;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.91-94
    • /
    • 2002
  • 음성인식 시스템의 실용화를 위해서 우선적으로 해결되어야 될 문제중 하나로 잡음환경하에서의 끝점검출을 들 수 있다. 잡음이 존재하지 않는 환경에서는 기존의 에너지 파라미터만으로도 어느정도 신뢰성있는 끝점 구간을 검출할 수 있으나 도심 소음과 같은 실제 잡음환경하에서는 대부분 좋지 않은 결과를 보인다. 본 논문에서는 도심환경의 배경잡음을 제거하는 방법으로 입력되는 음성에 대하여 주변소음에 의해 손상된 음성스펙트럼의 크기 성분만을 제거하는 전처리 기법인 Bark scale에 기반한 스펙트럼 차감법을 사용하고, 인간의 청각특성을 고려하여 음성의 주파수 대역을 3개의 대역으로 분리한 후, 대역별로 세밀한 에너지 문턱치값을 설정하여 음성의 끝점을 탐색하는 방법을 제안한다. 제안한 방법의 유효성을 확인하기 위해 실제 사무실 및 지하철역 등의 잡음환경하에서 녹음된 데이터베이스를 이용하여 끝점검출을 수행한 결과 기존의 에너지와 영교차율을 이용한 방법에 비해 평균 $46\%$의 오차율 감소와 대역에너지만을 사용한 경우에 비해 평균 $17\%$의 오차율 감소를 나타내어 제안한 방법의 유효성을 확인할 수 있었다.

  • PDF

Person Identification based on Clothing Feature (의상 특징 기반의 동일인 식별)

  • Choi, Yoo-Joo;Park, Sun-Mi;Cho, We-Duke;Kim, Ku-Jin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • With the widespread use of vision-based surveillance systems, the capability for person identification is now an essential component. However, the CCTV cameras used in surveillance systems tend to produce relatively low-resolution images, making it difficult to use face recognition techniques for person identification. Therefore, an algorithm is proposed for person identification in CCTV camera images based on the clothing. Whenever a person is authenticated at the main entrance of a building, the clothing feature of that person is extracted and added to the database. Using a given image, the clothing area is detected using background subtraction and skin color detection techniques. The clothing feature vector is then composed of textural and color features of the clothing region, where the textural feature is extracted based on a local edge histogram, while the color feature is extracted using octree-based quantization of a color map. When given a query image, the person can then be identified by finding the most similar clothing feature from the database, where the Euclidean distance is used as the similarity measure. Experimental results show an 80% success rate for person identification with the proposed algorithm, and only a 43% success rate when using face recognition.