• Title/Summary/Keyword: 배경 생성

Search Result 739, Processing Time 0.038 seconds

Generation of Active Stromotion Images using Kernel-based Tracking and Grab-Cut Algorithm (커널 기반 객체 추적 및 Grab-Cut 알고리즘을 이용한 액티브 스트로모션 영상 생성)

  • Oh, Kyeong-Seok;Choi, Yoo-Joo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.131-133
    • /
    • 2016
  • 본 논문은 연속적인 비디오 시퀀스에서 움직이는 객체의 영역을 효율적으로 분할하기 위하여 커널 기반 객체 추적과 Grab-Cut 알고리즘을 결합한 비디오 영역 분할 방법을 제안한다. 제안 방법에서는 추적 목표 객체의 초기 위치를 사각영역으로 선택하면, 사각의 외부 영역을 배경색상으로 인지하고, 배경 색상을 고려한 목표 객체의 주요 색상을 분석한다. 이를 기반으로 커널기반 객체 추적 기법을 적용하여 빠르게 객체의 영역을 추출한다. 추적한 각 객체의 영역에서 중앙 객체 영역과 배경 영역의 색 정보를 초기값으로 하여 Grab-Cut 알고리즘을 수행하고 사각형 형태가 아닌 객체의 실루엣 최적화된 영역으로 분할한다. 제안 방법을 스포츠 방송, 광고, 영화 등의 특수 효과로 활용되고 있는 stromotion 영상 생성에 적용하기 위하여 프레임별 추출된 객체의 영상을 새로운 프레임 영상에 합성하는 작업을 수행하여, 초당 10 프레임의 처리 속도에서 원하는 스트로모션 효과 영상을 생성하였다.

  • PDF

Dynamic Modeling of Eigenbackground for Object Tracking (객체 추적을 위한 고유 배경의 동적 모델링)

  • Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2012
  • In this paper, we propose an efficient dynamic background modelling method by using eigenbackground to extract moving objects from video stream. Even if a background model has been created, the model has to be updated to adapt to change due to several reasons such as weather or lighting. In this paper, we update a background model based on R-SVD method. At this time we define a change ratio of images and update the model dynamically according this value. Also eigenbackground need to be modelled by using sufficient training images for accurate models but we reorganize input images to reduce the number of images for training models. Through simulation, we show that the proposed method improves the performance against traditional eigenbackground method without background updating and a previous method.

Object Tracking out for Video Monitoring System on Real Time (실시간 영상감시 시스템을 위한 객체 추적 방법)

  • Lee, Keun-Wang;Oh, Taek-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.214-216
    • /
    • 2006
  • 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소사각영역을 설정하고, 이를 통해 객체를 추적한다. 아울러 제안방법의 성능에 대한 실험결과를 기존 추적알고리즘과 비교, 분석하여 평가한다.

  • PDF

A Study of Object Extraction and Trace at Real Time Images (실시간 영상에서 객체 추출 및 추적에 관한 연구)

  • Jang, Jung-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.475-478
    • /
    • 2010
  • 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하고 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소사각영역을 설정하고, 이를 통해 객체를 추적한다.

  • PDF

Object Tracking using variable Search Block on Realtime Image (실시간영상에서 가변탐색영역을 이용한 객체추적알고리즘)

  • Min, Byoung-Muk;Lee, Kwang-Hyoung;Oh, Hae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.227-231
    • /
    • 2006
  • 카메라를 통하여 실시간으로 입력되는 객체의 움직임은 잡음이나 조명의 변화에 따라 정확하게 추출하고 추적하는 것이 어렵다. 따라서 실시간으로 입력되는 영상에서 객체를 추출하고 움직임을 추적하기 위해서는 고속탐색 알고리즘이 필요하다. 본 논문은 실시간영상에서 객체의 움직임을 추출하고 추적을 위하여 배경영상의 변화에 강인한 배경영상 갱신 방법과 가변적인 탐색영역을 이용한 객체추적의 빠른 알고리즘을 제안한다. 배경영상 갱신 방법은 임계값이 실험적 기준치 보다 작은 경우에는 배경영상을 갱신하고, 큰 경우에는 객체가 유입된 시점으로 판단하여 픽셀검사를 통해 객체의 윤곽점을 추출한다. 추출된 윤곽점은 객체 영역블록의 생성과 일정한 거리를 유지하는 탐색블록을 생성하여 정확하고 빠른 객체의 움직임을 추적한다. 실험결과, 제안한 방법은 95% 이상의 높은 정확도를 보였다.

  • PDF

Controlling Dynamic Vehicles in Driving Simulation (드라이빙 시뮬레이션에서의 동적 차량 제어)

  • Cho, Eun-Sang;Choi, Kwang-Jin;Ko, Hyeongseok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.1
    • /
    • pp.37-47
    • /
    • 1997
  • This paper presents the algorithms for generating ambient traffic in driving simulation. Each ambient car is modeled as an autonomous agent that obeys the traffic rules by sensing the traffic lights, road signs, lanes, and other cars around. The algorithm is localized to the area where the car driven by the participant is currently located. Therefore the complexity of the algorithm does not depend on the size of the road network, allowing a huge environment to be simulated with no extra overhead. To avoid monotony, we produce artificial fluctuations in the behavior by employing various forms of probability distribution functions. The resulting behavior of the ambient cars is quite realistic. Experiments indicate that it is hard to tell whether an ambient car is computer-controlled or human-controlled.

  • PDF

Moving Object Detection with Rotating Camera Based on Edge Segment Matching (이동카메라 환경에서의 에지 세그먼트 정합을 통한 이동물체 검출)

  • Lee, June-Hyung;Chae, Ok-Sam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.1-12
    • /
    • 2008
  • This paper presents automatic moving object detection method using the rotating camera covering larger area with a single camera. The proposed method is based on the edge segment matching which robust to the dynamic environment with illumination change and background movement. The proposed algorithm presents an edge segment based background panorama image generation method minimizing the distortion due to image stitching, the background image generation method using Generalized Hough Transformation which can reliably register the current image to the panorama image overcoming the stitching distortions, the moving edge segment extraction method that overcome viewpoint difference and distortion. The experimental results show that the proposed method can detect correctly moving object under illumination change and camera vibration.

  • PDF

A Study on Pattern Recognition of Dynamic Object (동적인 생물체의 패턴 인식)

  • 강동구;차의영;전태수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.437-439
    • /
    • 2000
  • 본 논문은 연층형 생물체의 형태를 인식하는 방법을 제안한다. 고정된 카메라에 제약된 공간상에서 움직이는 생물체를 인식하기 위하여 다음과 같은 과정을 거친다. 먼저 배경 영상을 추출한 후 배경 영상과 현재 영상의 차영상을 통하여 물체의 이진화 영상을 생성하여 세선화 작업을 거친 후 마지막으로 변환된 이미지에서 대표점을 추출하여 패턴 생성기의 입력 데이터로 사용한다. 생물체의 형태 인식 방법은 문자 인식 방법과 몇 가지 차이점을 가지는데 문자의 경우 'q'와 'b'가 다르게 인식되지만 생물체의 경우 이 두 형태는 단지 하나의 형태가 회전한 결과이므로 두 형태를 동일하게 인식해야 한다. 그러므로 패턴 생성을 위한 입력 데이터도 다른 형태를 띄게 된다. 본 논문에서 제안한 방법은 지렁이, 뱀 등과 같은 물체의 행동 분석을 하기 위한 기초 데이터를 생성하는 좋은 방법이 될 수 있다.

  • PDF

Abnormal Behavior Detection Based on Adaptive Background Generation for Intelligent Video Analysis (지능형 비디오 분석을 위한 적응적 배경 생성 기반의 이상행위 검출)

  • Lee, Seoung-Won;Kim, Tae-Kyung;Yoo, Jang-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2011
  • Intelligent video analysis systems require techniques which can predict accidents and provide alarms to the monitoring personnel. In this paper, we present an abnormal behavior analysis technique based on adaptive background generation. More specifically, abnormal behaviors include fence climbing, abandoned objects, fainting persons, and loitering persons. The proposed video analysis system consists of (i) background generation and (ii) abnormal behavior analysis modules. For robust background generation, the proposed system updates static regions by detecting motion changes at each frame. In addition, noise and shadow removal steps are also were added to improve the accuracy of the object detection. The abnormal behavior analysis module extracts object information, such as centroid, silhouette, size, and trajectory. As the result of the behavior analysis function objects' behavior is configured and analyzed based on the a priori specified scenarios, such as fence climbing, abandoning objects, fainting, and loitering. In the experimental results, the proposed system was able to detect the moving object and analyze the abnormal behavior in complex environments.

Codebook-Based Foreground-Background Segmentation with Background Model Updating (배경 모델 갱신을 통한 코드북 기반의 전배경 분할)

  • Jung, Jae-young
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.375-381
    • /
    • 2016
  • Recently, a foreground-background segmentation using codebook model has been researched actively. The codebook is created one for each pixel in the image. The codewords are vector-quantized representative values of same positional training samples from the input image sequences. The training is necessary for a long time in the most of codebook-based algorithms. In this paper, the initial codebook model is generated simply using median operation with several image frames. The initial codebook is updated to adapt the dynamic changes of backgrounds based on the frequencies of codewords that matched to input pixel during the detection process. We implemented the proposed algorithm in the environment of visual c++ with opencv 3.0, and tested to some of the public video sequences from PETS2009. The test sequences contain the various scenarios including quasi-periodic motion images, loitering objects in the local area for a short time, etc. The experimental results show that the proposed algorithm has good performance compared to the GMM algorithm and standard codebook algorithm.