• 제목/요약/키워드: 배경이미지

검색결과 584건 처리시간 0.022초

색상 단순화와 윤곽선 패턴 분석을 통한 이미지에서의 글자추출 (Text extraction in images using simplify color and edges pattern analysis)

  • 양재호;박영수;이상훈
    • 한국융합학회논문지
    • /
    • 제8권8호
    • /
    • pp.33-40
    • /
    • 2017
  • 본 논문은 이미지에서 효과적인 문자검출을 위해 색상단순화 및 윤곽선에서의 패턴 분석을 통한 문자 검출방법을 제안한다. 윤곽선 기반방법을 사용하는 문자검출 알고리즘은 단순한 배경의 이미지에서는 우수한 성능을 보이지만, 복잡한 배경의 이미지에서는 성능이 떨어지는 단점이 있다. 따라서 제안하는 방법은 복잡한 배경에서의 비문자영역을 최소화하기 위해 이미지 단순화 및 패턴분석을 통한 문자 검출 알고리즘을 제안한다. 먼저 이미지에서의 문자영역 부분을 검출하기 위하여 전처리 과정으로 K-means 군집화를 사용하여 이미지의 색상을 단순화하고, 색상 단순화 과정에서의 물체의 경계의 흐릿해짐을 개선하기 위해 고주파통과필터를 통해 물체의 경계를 강화한다. 그 후 모폴로지 기법의 팽창과 침식의 차이를 이용하여 물체의 윤곽선을 검출하고, 획득한 영역의 윤곽선 부분의 정보(높이, 너비 면적)를 구한 후 패턴분석을 통해 조건을 줌으로써 문자 후보영역을 판별하여 문자가 아닌 불필요한 영역(그림, 배경)을 제거한다. 최종 결과로 라벨링을 통해 불필요한 영역이 제거된 결과를 보여준다.

Run-Length Connectivity를 이용한 지문영상의 영역분리 방법의 개선 (Enhanced segmentation method of a fingerprint image using run-length connectivity)

  • 박정호;송종관;윤병우;이명진
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.249-255
    • /
    • 2004
  • 지문이미지에서 특징점 추출 및 매칭을 위해서 지문영역과 배경을 분리하여야 한다. 지문영역과 배경을 분리하기 위해서 일반적으로 Sobel 마스크를 이용해 x축 y축의 밝기의 편차와 분산을 계산해서 문턱치보다 작은 값을 분리하게 된다. 하지만 이러한 방법만으로는 지문영역과 배경이 두 영역으로 정확히 분리되기 어려우며, 이러한 결과는 지문 인식의 계산량에 영향을 주게 된다. 본 논문에서는 지문이미지에서 배경을 효율적으로 분리하기 위해 RLC(Run-Length Connectivity)를 이용하는 방법을 제시하였다. 제시된 방법은 지문 이미지의 분산을 계산하고 문턱치를 적용하여 이진 이미지를 구한다. 이 이진 이미지는 일반적으로 여러 개의 영역으로 분할되며, RLC를 고려하여 run이 작은 영역부터 차례로 반전시킨다. 그래서 최종적으로 2개의 영역으로 분리되는 이진 이미지를 구하게 된다. 또한, 모의실험을 통하여 제시된 알고리즘이 지문이미지에서 효율적으로 계산량 감소가 됨을 보인다.

  • PDF

실감모형 제작을 위한 고해상도 유물 이미지 매팅 (High Resolution Photo Matting for Construction of Photo-realistic Model)

  • 최석근;이승기;최도연;김광호
    • 한국측량학회지
    • /
    • 제40권1호
    • /
    • pp.23-30
    • /
    • 2022
  • 최근 딥러닝을 이용한 이미지 매팅 방법에 관한 다양한 연구가 진행되고 있다. 특히, 사진측량 분야에서도 고품질의 실감모형을 제작하기 위해서는 촬영된 이미지에서 유물 정보를 추출하는 과정이 필요하며, 이와 같은 과정은 많은 시간과 인력이 들어 기존에는 크로마키를 이용하여 추출하는 방법이 많이 활용되고 있다. 그러나, 기존의 방법은 세부 분류에 대한 정확도가 떨어져 고품질 실감모형에 적용하기에는 어려움이 있었다. 본 연구에서는 사전배경정보와 훈련된 학습데이터를 이용하여 고해상도 유물 이미지에서 배경정보를 제거하고 추출된 유물 이미지에 대하여 정성적, 정량적 결과를 평가하였다. 그 결과 제안된 방법과 FBA(매뉴얼 트라이맵)이 정량적으로 높은 결과를 나타냈으며, 정성적 평가에서도 유물 주변부의 분류도가 높은 정확도를 보였다. 따라서 제안된 방법은 고해상도 유물 이미지 분류에 있어 사전배경정보 취득을 통하여 높은 정확도와 빠른 처리 속도를 나타냈으며, 실내 유물 촬영에서 그 활용 가능성을 확인하였다.

배경화면 변화를 이용한 객체의 윤곽점 검출 (Object Boundary Point Detection Using Background Image Change)

  • 백주호;이창수;오해석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.563-566
    • /
    • 2003
  • 인터넷 시대에 접어들면서 웹 카메라를 이용한 보안 시스템의 개발이 활발하다 원격지에 설치된 카메라가 보내준 영상을 통하여 현재의 상황을 파악할 수 있으며 적절한 조치를 웹을 통해 취할 수 있다. 본 논문에서는 카메라로부터 입력되어지는 입력영상과 배경영상의 차를 이용하여 움직임 검출하는 방법을 제안한다. 또한 배경영상은 시간에 따라 변화하기 때문에 변화된 시점부터 배경이미지 픽셀을 교체 해준다. 카메라에서 받아오는 영상을 배경영상과 입력영상으로 구분 한 다음 두 영상의 차를 구하여 영상의 변화점을 찾는다. 픽셀 검사는 모든 픽셀을 연산에 참여하는 방식을 탈피하여 일정한 간격을 두고 이미지의 픽셀을 검색하여 효율적인 객체의 윤곽점을 추출한다.

  • PDF

SFMOG : 초고속 MOG 기반 배경 제거 알고리즘 (SFMOG : Super Fast MOG Based Background Subtraction Algorithm)

  • 송석빈;김진헌
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1415-1422
    • /
    • 2019
  • 배경 제거는 동영상에서 변화를 감지하는 컴퓨터 비전 및 이미지 처리의 주요 작업이다. 최상의 성능을 가지는 배경 제거 방법은 일반적인 컴퓨팅 환경에서 실시간으로 사용할 수 없을 만큼 계산량이 많다. 제안하는 알고리즘은 널리 사용되는 MOG 기반의 배경 제거 알고리즘을 이미지 크기 조정 알고리즘으로 개선했다. 제안된 이미지 크기 조정 알고리즘은 계산량을 대폭 감소시키고 지역 정보를 활용하도록 설계해 카메라 잡음에 강력하다. 제안된 알고리즘의 실험결과는 최신 배경 제거 방법에 근접하는 분류능력과 13배 이상 빠른 처리 속도를 가진다.

전역 임계치 벡터의 유전적 진화에 기반한 적응형 배경차분화 (Adaptive Background Subtraction Based on Genetic Evolution of the Global Threshold Vector)

  • 임양미
    • 한국멀티미디어학회논문지
    • /
    • 제12권10호
    • /
    • pp.1418-1426
    • /
    • 2009
  • 주어진 배경 이미지로부터 전경 객체를 분리하는 것을 목표로 하는 배경 차분화 기법에 관한 많은 연구가 있어 왔다. 최근에 발표된 몇 가지 통계 기반 배경 차분화 기법들은 동적인 환경에서 동작할 수 있을 정도로 안정된 성능을 보이는 것으로 보고되고 있다. 그러나 이들 기법은 일반적으로 매우 많은 계산 자원을 요구하며, 객체의 명확한 윤곽을 획득하는데 있어서는 아직 어려움이 있다. 본 논문에서는 점진적으로 변화하는 배경을 모델링하기 위해 복잡한 통계 기법을 적용하는 대신 간단한 이동-평균 기법을 사용한다. 또한 픽셀별로 할당되는 다중의 임계치 대신 유전자 학습에 의해 최적화되는 하나의 전역적 임계치를 사용한다. 유전자 학습을 위해 새로운 적합도 함수를 정의하여 학습하고 이를 이용하여 이미지의 분할 결과들을 평가한다. 본 논문의 시스템은 웹 카메라가 장착된 개인용 컴퓨터에서 구현하였으며, 실사 이미지들에 대한 실험 결과에 의하면 기존의 가우시안 믹스쳐 방식보다 우수한 성능을 보이는 것으로 나타났다.

  • PDF

옵티컬 플로우와 가중치 경계 블렌딩을 이용한 전경 및 배경 이미지의 합성 (Composition of Foreground and Background Images using Optical Flow and Weighted Border Blending)

  • ;최정주
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제20권3호
    • /
    • pp.1-8
    • /
    • 2014
  • 스마트폰의 전면 및 후면 카메라를 이용하여 동시에 획득한 전경 이미지와 배경 이미지에서, 전경 이미지의 일부분인 전경 물체를 추출하여 배경 이미지에 합성하는 방법을 제시한다. 최근의 고사양 스마트폰은 대개 두 개의 카메라를 가지고 있고, 사진을 촬영하는 과정에서 미리보기 화면을 제공한다. 전면 카메라로부터 전경 이미지를 획득하는 과정에서 미리보기 화면의 비디오에 대한 옵티컬 플로우를 이용하여 전경 물체를 추출한다. 추출된 전경 물체와 배경 화면을 단순히 합성한 후, 전경 물체와 배경화면의 경계에서 가중치 경계 블렌딩을 이용하여 시각적으로 부드러운 경계를 갖는 합성을 수행한다. 화소 수준의 조밀한 옵티컬 플로우의 계산은 고사양의 스마트폰에서도 상당히 느리기 때문에, 전경 물체 추출을 위한 마스크의 계산을 저해상도에서 수행하여 계산시간을 크게 절약할 수 있다. 실험적 결과에 의하면 제안하는 방법은 더 적은 계산 시간을 사용하며, 널리 사용되는 Poisson 이미지 합성 방법에 비하여 시각적으로 더 우수한 결과를 얻을 수 있다. 제안하는 방법은 Poisson 이미지 합성 방법에서 자주 관찰되는 색 번짐 결점을 가중치 경계 블렌딩을 이용하여 제한적인 수준에서 극복할 수 있다.

게임 배경과 캐릭터 효과 설정에 관한 연구 (A Study on Game Background and Character Effect Setting)

  • 주헌식
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제53차 동계학술대회논문집 24권1호
    • /
    • pp.227-228
    • /
    • 2016
  • 본 연구에서는 게임 배경과 게임 캐릭터의 효과에 대해서 나타낸다. 먼저 3개의 캐릭터 이미지를 주 캐릭터 로 만들 이미지에 합성기법을 적용하여 캐릭터들을 합성한다. 합성하여 만든 캐릭터와 다른 캐릭터의 모양과 형태에 맞게 알맞은 배경 색상으로 만들고, 각 캐릭터의 크기, 원근, 모양, 색상에 따라 효과를 적용한다. 따라서 게임 콘텐츠를 제작하는데 정지 영상으로 표현하여 캐릭터 애니메이션과 장면에 맞는 사운드를 삽입하여 게임 콘텐츠로서 시각과 청각과 움직임이 있는 게임 캐릭터를 제작한다. 특히 배경색, 캐릭터의 번개 및 라이팅 효과색상 같은 것에 관심을 갖고 제작하여 앞으로 게임 콘텐츠의 배경과 캐릭터 효과를 제작하는데 모션그래픽을 이용하여 간단하게 제작 할 수 있음을 나타내었다.

  • PDF

이미지 내의 텍스트 데이터 인식 정확도 향상을 위한 멀티 모달 이미지 처리 프로세스 (Multi-modal Image Processing for Improving Recognition Accuracy of Text Data in Images)

  • 박정은;주경돈;김철연
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.148-158
    • /
    • 2018
  • 광학 문자 인식(OCR)은 텍스트를 포함한 이미지에서 텍스트 영역을 인식하고 이로부터 텍스트를 추출하는 기술이다. 전체 텍스트 데이터 중 상당히 많은 텍스트 정보가 이미지에 포함되어 있기 때문에 OCR은 데이터 분석 분야에 있어 중요한 전처리 단계를 담당한다. 대부분의 OCR 엔진이, 흰 바탕의 검정 글씨의 단순한 형태를 가진 이미지와 같은, 텍스트와 배경의 구분이 뚜렷한 저 복잡도 이미지에 대해서는 높은 인식률을 보이는 반면, 텍스트와 배경의 구분이 뚜렷하지 않은 고 복잡도 이미지에 대해서는 저조한 인식률을 보이기 때문에, 인식률 개선을 위해 입력 이미지를 OCR 엔진이 처리하기 용이한 이미지로 변형하는 전처리 작업이 필요하게 된다. 따라서 본 논문에서는 OCR 엔진의 정확성 증대를 위해 텍스트 라인별로 이미지를 분리하고, 영상처리 기법 기반의 CLAHE 모듈과 Two-step 모듈을 병렬적으로 수행하여 텍스트와 배경 영역을 효율적으로 분리한 후 텍스트를 인식한다. 이어서 두 모듈의 결과 텍스트에 대하여 N-gram방법과 Hunspell 사전을 결합한 알고리즘으로 인식률을 비교하여 가장 높은 인식률의 결과 텍스트를 최종 결과물로 선정하는 방법론을 제안한다. 대표적인 OCR 엔진인 Tesseract와 Abbyy와의 다양한 비교 실험을 통해 본 연구에서 제안하는 모듈이 복잡한 배경을 가진 이미지에서 가장 정확한 텍스트 인식률을 보임을 보였다.

재구성된 포인트 클라우드 모델 기반 이미지 편집 시스템 개발 (Development of Image Manipulation System based on Reconstructed Point-cloud Model)

  • 윤현욱;홍광진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.465-468
    • /
    • 2018
  • 현재 사용되고 있는 보편적인 이미지 편집 방식은 이미지 내부 일부 영역을 선택 및 추출하는 방식으로 객체를 배경과 분리한다. 객체가 분리되는 과정에서 객체가 있었던 곳에서는 빈 영역이 발생하게 되는데, 이 문제를 해결하기 위해 인접한 영역을 가져와서 채우거나, 딥러닝을 적용하여 유사한 이미지로 채우는 방식이 가장 보편적이다. 그러나 이러한 방식은 배경에서 유실된 부분을 인공적인 방법으로 채우기 때문에 완벽하게 복원하기가 힘들다. 따라서 본 논문에서는 미리 해당 이미지에 대한 3 차원 정보를 가공 및 저장함으로써 편집으로 인해 유실되는 부분을 3 차원 정보로 부터 복구할 수 있는 아이디어를 제안한다.