• Title/Summary/Keyword: 배경값

Search Result 909, Processing Time 0.031 seconds

격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할 (Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values)

  • 김구진;백낙훈
    • 한국멀티미디어학회논문지
    • /
    • 제8권10호
    • /
    • pp.1369-1382
    • /
    • 2005
  • 도로 영상에서 차량 영역을 분할하는 차량 영역 분할(vehicle segmentation) 문제는 지능형 교통 시스템을 비롯한 다양한 응용 분야들에서 중요하게 사용되는 기본 연산(fundamental operation)이다. 본 연구에서는 야외의 도로 상에 설치된 CCD카메라에서 촬영된 정지 영상으로부터 차량 영역을 찾아내는 효율적인 방법을 제안한다 제안하는 방법은 입력되는 영상들을 격자 단위로 분할하여 각 격자에서의 에지 검출 결과를 대표하는 특징값(feature value)들을 통계적으로 분석한 후, 이를 바탕으로 최적해를 구한다. 전처리 과정에서는 다양한 외부 환경에서 촬영한 배경 영상들에 대해서 각 격자에서의 특징값들을 통계 처리한다. 입력된 차량 영상에서는 각 격자의 특징값이 배경 영상의 대응되는 격자에서의 특징값과 통계적으로 얼마나 오차를 보이냐에 따라, 배경 영역인지 차량 영역인지를 판단한다. 격자 별로 차량 영역에 해당하는 지를 판정한 뒤, 이 결과에 동적 프로그래밍(dynamic Programming) 기법을 이용하여 차량을 포함하는 최적의 직사각형 영역을 찾아낸다. 본 논문에서 제안하는 방법은 통계 처리와 전역 탐색 기법을 사용하므로 휴리스틱에 주로 의존하는 기존 연구들에 비해 좀더 체계적이다. 또한, 배경 영상에 대한 통계 처리는 흐리거나 맑은 등의 날씨 변화 및 바람이나 진동에 의한 카메라의 흔들림과 같은 다양한 외부 요인들이 가져올 수 있는 노이즈나 오차에 대해서도 높은 신뢰성을 보여준다. 제안하는 방법을 구현한 프로토타입 시스템은 $1280\times960$ 크기의 차량 영상들을 장당 평균 0.150초의 수행 시간에 처리하였으며, 총 270장의 다양한 노이즈를 가지는 차량 영상들에 대해 $97.03\%$의 성공률을 보였다.

  • PDF

혼잡한 환경에 적합한 적응적인 배경모델링 방법 (Adaptive Background Modeling for Crowded Scenes)

  • 이광국;송수한;가기환;윤자영;김재준;김회율
    • 한국멀티미디어학회논문지
    • /
    • 제11권5호
    • /
    • pp.597-609
    • /
    • 2008
  • 기존의 배경 모델링 방법은 배경 모델의 반복적 갱신(recursive update)으로 인해 배경보다 객체가 더 자주 등장하는 혼잡한 환경에서는 정확한 배경 모델링을 생성하기 어려운 문제를 지니고 있다. 본 논문은 이러한 기존 방법의 문제를 해결하기 위해 기존의 혼합 Gaussian 모델을 기반으로 하는 적응적 배경 모델링 방법을 제안한다. 제안한 방법은 영상 내 전경 영역의 비율에 따라 배경 모델의 학습 비율을 적응적으로 조절한다. 따라서, 혼잡 상황에서는 배경 모델의 갱신을 억제하여 배경 모델을 잘 유지시키는 것이 가능하다. 실험을 통해 제안한 방법이 일반적인 상황의 영상에서는 기존 방법과 유사한 정확도를 보이지만 혼잡한 상황에서는 기존 방법과 비교하여 배경 제거를 효과적으로 수행하는 것을 확인하였으며, 또 정확도 측정 결과 혼잡한 상황의 영상에서 기존 방법과 비교하여 F 값이 5-10% 가량 향상함을 확인하였다.

  • PDF

객체 추적을 위한 고유 배경의 동적 모델링 (Dynamic Modeling of Eigenbackground for Object Tracking)

  • 김성영
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.67-74
    • /
    • 2012
  • 본 논문에서는 비디오 스트림으로부터 움직이는 객체를 추출하기 위해 고유 배경(eigenbackground)을 사용하여 효율적으로 배경을 모델링하는 방법을 제안한다. 배경은 모델링하더라도 시간이 지남에 따라 날씨나 조명의 변화에 따라 변화가 발생하므로 변화 요소를 반영할 수 있도록 배경 모델을 갱신해야 한다. 이를 위해 본 논문에서는 R-SVD 방법에 기반을 두고 배경 모델을 갱신하도록 한다. 이 때 영상 변화도를 정의하여 이 값에 따라 동적으로 배경을 모델링하여 처리시간을단축할 수 있도록 한다. 또한 고유 배경을 사용하는경우 충분한 훈련 데이터를사용해야만 정확한 모델을 생성할 수 있지만 본 논문에서는 적은 수의 데이터만을 사용하여 정확한 모델을 생성할 수 있도록 입력 프레임을 재구성하여 사용한다. 제안한 방법은 초기 고유 배경 모델 및 기존의 주기적으로 배경을 갱신하는 방법과의 비교를 통해 그 우수성을 확인한다.

EVRC 음성부호화기의 잡음억제단을 이용한 수중 천이신호 검출 (Detection of Underwater Transient Signals Using Noise Suppression Module of EVRC Speech Codec)

  • 김태환;배건성
    • 한국음향학회지
    • /
    • 제26권6호
    • /
    • pp.301-305
    • /
    • 2007
  • 본 연구에서 관심을 갖는 수중환경에서의 천이소음도 가청주파수 대역임에 착안하여 이동통신 시스템의 표준 음성부호화기인 EVRC의 전처리단을 이용하여 배경잡음 구간을 판별하고 이를 바탕으로 수중 천이신호를 탐지하는 알고리즘을 제안하였다. EVRC 전처리 모듈에 프레임 단위의 입력신호가 들어가면 모듈로부터 잡음 구간을 결정하는 플래그, 각 채널의 에너지, 잡음이 제거된 신호, 입력신호의 에너지, 배경잡음의 에너지, 잡음이 제거된 신호의 에너지에 해당하는 파라미터 값을 얻게 된다. 잡음이 제거된 신호의 에너지를 배경잡음의 에너지로 정규화하고 이를 문턱값과 비교함으로써 천이신호를 검출할 수 있다. 또한 문턱 값은 잡음 구간에서 구한 이전 값을 이용해서 갱신된다. 실험결과를 통해 제안한 알고리즘이 백색 또는 유색잡음 하에서도 4% 미만의 오차를 보여주는 것을 검증한다.

배경 분리 기반의 실시간 객체 추적을 위한 개선된 적응적 배경 혼합 모델 (An Improved Adaptive Background Mixture Model for Real-time Object Tracking based on Background Subtraction)

  • 김영주
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.187-194
    • /
    • 2005
  • 연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명 조건의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델 (GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 제안되어 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 a(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값의 분산 등을 이용하여 학습률 a값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.

  • PDF

적응적 이진화 기법과 Bresenham's algorithm을 이용한 안경 렌즈 제품의 자동 흠집 검출 (Automatic Defect Inspection with Adaptive Binarization and Bresenham's Algorithm for Spectacle Lens Products)

  • 김광백;송두헌
    • 한국정보통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1429-1434
    • /
    • 2017
  • 기존의 안경 렌즈 흠집 검출 방법은 영상내의 미세 잡음이 제거되지 않아 렌즈 영역이 정확히 추출되지 않는 경우가 발생하여 흠집 영역을 검출할 수 없다는 문제점이 발생한다. 따라서 본 논문에서는 이러한 문제점을 개선하기 위해 적응적 이진화 기법과 Bresenham algorithm을 적용하여 흠집 영역을 검출한다. 제안된 방법은 안경 렌즈 영상에서 명암 대비를 적용하여 렌즈의 명암을 강조한다. 명암이 강조된 영상에서 렌즈 밖의 배경 영역은 흠집 검출에 불필요하므로 이진화 기법을 적용한 후에 Bresenham algorithm을 적용하여 렌즈의 윤곽선을 검출하고 렌즈 이외의 배경을 제거한다. 렌즈 이외의 배경이 제거된 렌즈 영상에서 렌즈 내부의 배경과 흠집의 명암 대비를 높인다. 명암이 강조된 렌즈 내부 영역에서 적응적 이진화 기법을 적용하여 흠집과 잡음을 검출한다. 잡음은 중간값 필터를 적용하여 제거한 후에 흠집 영역을 추출한다. 추출된 흠집 영역에서 렌즈의 중심으로부터의 거리와 흠집의 크기를 퍼지 추론 규칙에 적용하여 눈에 미치는 영향 정도를 분석한다. 제안된 방법의 성능을 분석하기 위해 CHEMI, MID, HL, HM과 같은 시력 보정용 렌즈 영상을 대상으로 실험한 결과, 12개의 시력 보정용 렌즈 영상 중에서 10개에서 결함을 성공적으로 추출하였다.

이동물체 분리를 위한 Seed 선정 및 영역 확장 알고리즘에 관한 연구 (A Study on Seed Selection and Region Growing Algorithm for Moving Object Segmentation)

  • 경태원;강승훈;채옥삼
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.981-984
    • /
    • 2001
  • 본 논문은 이동물체 영역을 신뢰성 있게 분리하는데 기초가 되는 seed를 정확하게 선정하고, 선정된 seed를 중심으로 영역을 확장함으로써 이동물체 영역을 분리하기 위한 방법을 제안한다. 고정된 카메라로부터 입력되는 연속된 영상열로부터 초기의 이동물체가 존재하지 않는 영상을 참고영상으로 하여 입력영상과의 차영상을 구하고 차영상의 히스토그램에서 배경잡음 모델링을 통해 배경잡음을 제거한다. 그리고 배경잡음이 제거된 차영상에서 Local Maxima 들을 이용해 후보 seed를 선정한 후, 이드의 특징값들을 분석하여 이동물체의 seed와 배경의 seed 를 결정하고 이 두 개의 seed를 기반으로 watershed 알고리즘을 적용하여 영역을 확장함으로써 이동물체 영역을 추출한다. 제안된 방법을 실제 상황에서 얻은 다양한 영상열에 적용한 결과, 기존의 영역분리 알고리즘보다 주위 잡음의 영향을 적게 받으며 효과적으로 이동물체를 분리할 수 있음을 확인할 수 있었다.

  • PDF

배경 정보 파악을 통한 X-ray 영상 히스토그램 평활화 (X-ray Image Histogram Equalization based on Understanding of Background Information)

  • 강영민;이경준;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 추계학술대회
    • /
    • pp.283-286
    • /
    • 2014
  • X-ray 영상의 경우 검은 배경으로 인해 기존의 히스토그램 평활화를 사용하여 대비비를 향상 시킬 경우 문제가 발생한다. 전역 히스토그램 평활화의 경우 영상의 특징을 고려하지 않은 채 전체적으로 히스토그램 평활화가 이루어지기 때문에 부분적인 명암값을 개선시키기 어렵다. BBHE(Bright Preserving Bi-Histogram Equalization)과 DSIHE(Dualistic Sub-Image Histogram Equalization)과 같은 영역별 히스토그램 평활화의 경우 X-ray 사진특성상 검은 배경으로 인하여 히스토그램 평활화를 적용해도 원하는 대비비를 얻기 힘들며 부분적으로 왜곡이 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 영상의 히스토그램을 통해 배경 정보를 파악하여 밝기 영역을 나눈 후 히스토그램 평활화를 진행함으로써 X-ray 사진의 대비비를 효율적으로 향상시킨다.

  • PDF

실시간영상에서 가변탐색영역을 이용한 객체추적알고리즘 (Object Tracking using variable Search Block on Realtime Image)

  • 민병묵;이광형;오해석
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 춘계학술발표논문집
    • /
    • pp.227-231
    • /
    • 2006
  • 카메라를 통하여 실시간으로 입력되는 객체의 움직임은 잡음이나 조명의 변화에 따라 정확하게 추출하고 추적하는 것이 어렵다. 따라서 실시간으로 입력되는 영상에서 객체를 추출하고 움직임을 추적하기 위해서는 고속탐색 알고리즘이 필요하다. 본 논문은 실시간영상에서 객체의 움직임을 추출하고 추적을 위하여 배경영상의 변화에 강인한 배경영상 갱신 방법과 가변적인 탐색영역을 이용한 객체추적의 빠른 알고리즘을 제안한다. 배경영상 갱신 방법은 임계값이 실험적 기준치 보다 작은 경우에는 배경영상을 갱신하고, 큰 경우에는 객체가 유입된 시점으로 판단하여 픽셀검사를 통해 객체의 윤곽점을 추출한다. 추출된 윤곽점은 객체 영역블록의 생성과 일정한 거리를 유지하는 탐색블록을 생성하여 정확하고 빠른 객체의 움직임을 추적한다. 실험결과, 제안한 방법은 95% 이상의 높은 정확도를 보였다.

  • PDF

형태 정보 기반 확장 방법을 이용한 영역 분리 알고리즘에 관한 연구 (The Region Segmentation using Shape-based Expanding)

  • 안용학;김학춘
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2002년도 춘계학술대회 논문집
    • /
    • pp.316-322
    • /
    • 2002
  • 본 연구에서는 고정된 카메라로부터 입력되는 영상열에서 이동 물체를 신뢰성있게 분리하기 위해 형태 정보를 이용한 확장 방법을 제안한다. 영역 분리의 핵심은 배경으로부터 주위 잡음 영역과 무관하게 이동 물체 영역을 분리하는 기술이라고 볼 수 있다. 제안된 방법은 초기 이동 물체가 존재하지 않는 영상을 참고 영상(reference image)으로 하여 입력 영상(input image)과의 차영상(subtraction image)을 구하고, 차영상의 히스토그램(histogram)에서 배경잡음 모델링(modeling)을 통해 배경잡음을 제거한다. 그리고 배경잡음이 제거된 차영상에서 국부 최대값들(local maxima)을 이용해 후보 초기 영역을 선정한 후, 이 영역을 기반으로 영역의 형태정보를 이용하여 영역을 선별적으로 확장하면서 결합하는 방법을 사용하였다. 제안된 방법을 실제 상황에서 얻은 다양한 영상열에 적용한 결과, 기존의 영역 분리 방법보다 주위 잡음과 무관하게 이동 물체를 분리할 수 있음을 확인할 수 있었다.

  • PDF