• Title/Summary/Keyword: 밭토양

Search Result 750, Processing Time 0.037 seconds

Cellulosic Ethanol Production (셀룰로식 (Cellulosic) 에탄올 생산)

  • Chung, Chang-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • The world demand of ethanol as an alternative fuel for gasoline is increasing rapidly because of high oil price and global climate change. Most of ethanol is currently produced from corn grain or sugars in sugarcane and sugar beet. Because these sources compete with foods and animal feed and are not expected to be enough for future demand of ethanol. Thus, cellulosic ethanol from agricultural residues or wood has to be commercialized in near future. Typical cellulosic ethanol production consists of pretreatment, enzyme hydrolysis, fermentation and product separation. This paper reviews the principles and status of each step and discusses issues for cellulosic ethanol production.

Evaluation of Legume Green Manure Crops for Spring-Sowing in the Central Regions of Korea (중부지역에서 이용 가능한 춘파용 두과 녹비작물 선발)

  • Cho, Hyeoun-Suk;Jeon, Weon-Tai;Seong, Ki-Yeung;Kim, Min-Tea;Lee, Jong-Ki;Kim, Chung-Guk;Jeong, Kwang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.333-338
    • /
    • 2010
  • The use of green manure crop for sustainable agriculture can reduce the use of chemical fertilizer and herbicides, and the cultivation area of the green manure crop has gradually increased. However, there has been little information about appropriate use of spring-sown green manure crop in the central regions of Korea. This study was conducted to investigate the effect of different legume crops on application of sown green manure in spring. Each of the green manure crops including alfalfa, chinese milk vetch, crimson clover, crotalaria, hairy vetch, lupin, red clover and white clover was grown in upland soil of silt loam. The dry weight and C/N ratio of all crops increased throughout the growing period, while C/N ratio of all crops during growing period was lower than 25. The highest value of dry weight among the green manure crops was observed in crimson clover, followed by red clover, lupin, chinese milk vetch and alfalfa. Also, the highest value of contents of nitrogen, phosphous and potassium of green manure crops were observed in hairy vetch, alfalfa and crimson clover, respectively. And the values were 41.3, 4.3 and 35.9 g $kg^{-1}$, respectively. In terms of nitrogen yield, crimson clover that showed 71 kg N $ha^{-1}$ was the highest yield among the green manure crops, followed by chinese milk vetch of 51 kg $ha^{-1}$, red clover of 46 kg $ha^{-1}$, and hairy vetch of 41 kg $ha^{-1}$. These results suggest that crimson clover, chinese milk vetch, red clover, and hairy vetch could be a suitable green manure crop for spring sowing.

Net Primary Production Changes over Korea and Climate Factors (위성영상으로 분석한 장기간 남한지역 순 일차생산량 변화: 기후인자의 영향)

  • Hong, Ji-Youn;Shim, Chang-Sub;Lee, Moung-Jin;Baek, Gyoung-Hye;Song, Won-Kyong;Jeon, Seong-Woo;Park, Yong-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.467-480
    • /
    • 2011
  • Spatial and temporal variabilities of NPP(Net Primary Production) retrieved from two satellite instruments, AVHRR(Advanced Very High Resolution Radiometer, 1981-2000) and MODIS(MODerate-resolution Imaging Spectroradiometer, 2000-2006), were investigated. The range of mean NPP from A VHRR and MODIS were estimated to be 894-1068 $g{\cdot}C/m^2$/yr and 610-694.90 $g{\cdot}C/m^2$/yr, respectively. The discrepancy of NPP between the two instruments is about 325 $g{\cdot}C/m^2$/yr, and MODIS product is generally closer to the ground measurement than AVHRR despite the limitation in direct comparison such as spatial resolution and vegetation classification. The higher NPP values over South Korea are related to the regions with higher biomass (e.g., mountains) and higher annual temperature. The interannual NPP trends from the two satellite products were computed, and both mean annual trends show continuous NPP increase; 2.14 $g{\cdot}C/m^2$/yr from AVHRR(1981-2000) and 6.08 $g{\cdot}C/m^2$/yr from MODIS (2000-2006) over South Korea. Specifically, the higher increasing trends over the Southwestern region are likely due to the increasing productivity of crop fields from sufficient irrigation and fertilizer use. The retrieved NPP shows a closer relationship between monthly temperature and precipitation, which results in maximum correlation during summer monsoons. The difference in the detection wavelength and model schemes during the retrieval can make a significant difference in the satellite products, and a better accuracy in the meterological and land use data and modeling applications will be necessary to improve the satellite-based NPP data.

Seed Viability and Growth Characteristics of Eclipta prostrata (L.) L. (한련초의 종자생존력(種子生存力) 및 생장특성(生長特性))

  • Lee, H.K.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.8 no.3
    • /
    • pp.309-316
    • /
    • 1988
  • Several experiments were conducted to investigate the achene viability and growth characteristics of Eclipta prostrata (L.) L. No dormancy and no after-ripening requirement were found for E. prostrata achenes. When achenes were stored at room temperature, germination did not decrease with up to 5 months storage. Large differences in loss of viability of E. prostrata achenes occurred when different dehydration methods were used. Immediate dehydration resulted in high viability, but slow dehydration resulted in severe loss of viability. Achene viability at shallow burial depths (5 and 10 cm deep) was lower under upland soil conditions than under lowland soil conditions. Seedling growth was greatly reduced when flooding to a depth of 10 cm occurred at or before the 4-leaf stage. Flooding after the 4-leaf stage stimulated stem elongation. Branching started from the second week and usually terminated at the tenth week. Leaf size was determined by the branch which are related to the assimilate supply. Flowering of E. prostrata started during the fifth week after emergence, and mature achenes were produced from the sixth week. Ten to 14 days were needed for the achenes to mature. About 14,000 achenes were produced on each plant. Achene production per week increased from the sixth week to the tenth week and thereafter it declined. The average number of achenes per inflorescence decreased with delay in flowering.

  • PDF

Surface Exchange of Energy and Carbon Dioxide between the Atmosphere and a Farmland in Haenam, Korea (한국 해남 농경지와 대기간의 에너지와 이산화탄소의 지표 교환)

  • Hee Choon Lee;Jinkyu Hong;Chun-Ho Cho;Byoung-Cheol Choi;Sung-Nam Oh;Joon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.61-69
    • /
    • 2003
  • Surface energy and $CO_2$ fluxes have been measured over a farmland in Haenam, Korea since July 2002. Eddy covariance technique, which is the only direct flux measurement method, was employed to quantitatively understand the interaction between the farmland ecosystem and the atmospheric boundary layer. Maintenance of eddy covariance system was the main concern during the early stage of measurement to minimize gaps and uncertainties in the dataset. Half-hourly averaged $CO_2$ concentration showed distinct diurnal and seasonal variations, which were closely related to changes in net ecosystem exchange (NEE) of $CO_2$. Daytime maximum $CO_2$ uptake was about -1.0 mg $CO_2$ m$^{-2}$ s$^{-1}$ in August whereas nighttime $CO_2$ release was up to 0.3 mg $CO_2$ m$^{-2}$ s$^{-1}$ during the summer. Both daytime $CO_2$ uptake and nighttime release decreased gradually with season. During the winter season, NEE was from near zero to 0.05 mg $CO_2$ m$^{-2}$ s$^{-1}$ . FK site was a moderate sink of atmospheric $CO_2$ until September with daily NEE of 22 g $CO_2$ m$^{-2}$ d$^{-1}$ . In October, it became a weak source of $CO_2$ with an emission rate of 2 g $CO_2$ m$^{-2}$ d$^{-1}$ . Long-term flux measurements will continue at FK site to further investigate inter-annual variability in NEE. to better understand these exchange mechanism and in-depth analysis, process-level field experiments and intensive short-term intercomparisons are also expected to be followed.

Occurrence of Viral Diseases in the Early Growth Stage of Soybean in Korea (우리나라 콩 생육초기 바이러스병 발생 양상)

  • Sangmin Bak;Mina Kwon;Dong Hyun Kang;Hong-Kyu Lee;Young-Nam Yoon;In-Yeol Baek;Young Gyu Lee;Jae Sun Moon;Su-Heon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.253-264
    • /
    • 2022
  • In this study, we investigated the occurrence of viral diseases in the early growth stage of soybean to establish management practices. We collected 83 soybean samples showing abnormal symptoms, approximately 3-4 weeks after seeding in the breeding field of the National Institute of Crop Science. Viruses were detected in the collected samples using reverse transcription polymerase chain reaction (RT-PCR) and metatranscriptome analysis of all those samples. The incidence of viral diseases in the field was less than 1% overall and up to 50% in certain cultivars and lines. RT-PCR and metatranscriptome analysis detected Soybean yellow mottle mosaic virus (SYMMV), Soybean mosaic virus (SMV), Soybean yellow common mosaic virus, Peanut stunt virus, and soybean geminivirus A (SGVA). Among these detected viruses, SYMMV and SMV were identified as major viruses causing infection in the early growth stage of soybean, with detection rates of 53.7% and 42.6%, respectively. Soybeans infected with SYMMV showed typical mosaic symptoms, whereas those infected with SMV showed a variety of symptoms such as mosaic, mottle, stunt, and chlorotic spots. Transmission characteristics of these viruses are variable, such that SMV is primarily transmitted by seeds, whereas SYMMV could be transmitted by insects, soil, and seeds. In this study, SGVA was detected in the early growth stage of soybean, and research on the current status and its effects on soybean after the early growth stage should be conducted.

Identification of a Locus Associated with Resistance to Phytophthora sojae in the Soybean Elite Line 'CheonAl' (콩 우수 계통 '천알'에서 발견한 역병 저항성 유전자좌)

  • Hee Jin You;Eun Ji Kang;In Jeong Kang;Ji-Min Kim;Sung-Taeg Kang;Sungwoo Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.134-146
    • /
    • 2023
  • Phytophthora root rot (PRR) is a major soybean disease caused by an oomycete, Phytophthora sojae. PRR can be severe in poorly drained fields or wet soils. The disease management primarily relies on resistance genes called Rps (resistance to P. sojae). This study aimed to identify resistance loci associated with resistance to P. sojae isolate 40468 in Daepung × CheonAl recombinant inbred line (RIL) population. CheonAl is resistant to the isolate, while Daepung is generally susceptible. We genotyped the parents and RIL population via high-throughput single nucleotide polymorphism genotyping and constructed a set of genetic maps. The presence or absence of resistance to P. sojae was evaluated via hypocotyl inoculation technique, and phenotypic distribution fit to a ratio of 1:1 (R:S) (χ2 = 0.57, p = 0.75), indicating single gene mediated inheritance. Single-marker association and the linkage analysis identified a highly significant genomic region of 55.9~56.4 megabase pairs on chromosome 18 that explained ~98% of phenotypic variance. Many previous studies have reported several Rps genes in this region, and also it contains nine genes that are annotated to code leucine-rich repeat or serine/threonine kinase within the approximate 500 kilobase pairs interval based on the reference genome database. CheonAl is the first domestic soybean genotype characterized for resistance against P. sojae isolate 40468. Therefore, CheonAl could be a valuable genetic source for breeding resistance to P. sojae.

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.

Field Survey on Pig Slurry Utilization for Crop Cultivation in the Agricultural Farm (양돈분뇨 액비를 이용한 경종농가의 작물재배 실태조사)

  • Choi, D.Y.;Noh, J.S.;Lee, S.C.;Kim, H.N.;Ahn, K.J.;Cho, I.K.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.141-150
    • /
    • 2006
  • To optimise the efficient use of nutrients in pig slurry is to cultivate friendly environmental crops. This field survey is to investigate the actual conditions of pig slurry utilization for cultivation of crops in the agricultural farm, based on the survey for 407 selected farms in 9 provinces included 78 counties in Korea. The results obtained in this survey were summarized as follow ; The motive which came to use pig slurry in the agricultural farm were production of friendly environmental crops (29.7%), economy of chemical fertilizer (25.1%), spontaneously (19.2%), inducement of neighboring farmhouse (16.0%), increase of soil fertility (9.3%), and the others (0.7%), respectively. The proportions of pig slurry application land were 56.5% for.ice paddy, 22.6% for dry field, 13.3% for orchard, 4.4% for controlled agriculture and 3.2% for other, respectively. The number of times of pig slurry utilization per year were once (48.9%), twice (31.9%), thrice (14.0%), and the others (5.2%), respectively. The controversial points of pig slurry utilization were malodor (54.1%), insufficiency of spread equipment (22.1%), inconvenience (14.5%), over application (3.4%), over cost (2.9%), heavy metal (1.7%), sanitation (1.0%) and the other (0.2%), respectively. The results indicated that pig slurry could be used as fertilizer source of friendly environmental crops, but further studies are needed to determine the application method and value of the pig slurry for crop cultivation.

  • PDF

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.