• Title/Summary/Keyword: 밭토양

Search Result 753, Processing Time 0.027 seconds

Physico-chemical Properties of Soils Developed on the Different Topographies in Korea (우리나라 농경지토양(農耕地土壤)의 지형별(地形別) 이화학적(理化學的) 특성(特性))

  • Hyeon, Geun-Soo;Park, Chang-Seo;Jung, Sug-Jae;Moon, Joon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.271-279
    • /
    • 1989
  • Mean values representing the particle size distribution and some chemical properties for the cultivated soils were obtained from the analysis results of the typical profiles, which were described by the detailed soil maps throughout Korea. Analysis results of 5,215 soil samples (3,075 for paddy and 2,140 for upland) were available for the determination of mean values. The results are under. 1. Paddy topsoil contained 20.4% for clay, 5.8 for pH, 2.6% for organic matter, 10.4me/100g for exchangeable K, and 89ppm for available $P_2O_5$. Upland topsoil did 17.3% for clay, 5.5 for pH, 1.8% for organic matter, 9.lme/100g for CEC, 0.29me/100g for exchangeable K, and 103ppm for availabal $P_2O_5$. 2. Soil properies for paddy were markedly influenced by the reliefs. Topsoil contained 21.4% for clay, 6.0 for pH, 2.2% for organic matter, 10.8me/100g for CEC, 0.39me/100g for exchang-cable K and 57ppm for available $P_2O_5$ on the fluvio-marine plain, 15.3%, 5.7, 2.0%, 8.6me/100g, 0.17me/100g and 76ppm on the alluvial plain, 18.8%, 5.9, 2.7%, 10.4me/100g, 0.19me/100g and 80ppm on the valleys and fans, 25.0%, 5.7, 2.5%, 11.5me/100g, 0.26me/100g, 0.27me/100g and 141ppm on the moutain foot slopes, respectively. 3. Soil Properties for upland, also, were markedly influenced by the reliefs. Topsoil contained 5.5% for clay, 5.7 for pH, 1.1% for organic matter, 4.7me/100g for CEC, 0.17me/100g for exchangeable K and 50ppm for available $P_2O_5$ on the fluvio-marine plain, 10.3%, 5.5, 1.4%, 7.6me/100g, 0.26me/100g and 160ppm on the alluvial plain, 13.9%, 5.4, 1.8%, 9.3me/100g, 0.24me/100g and and 184ppm on the valleys and fans, 29.8%, 5.3, 2.1%, 11.2me/100g 0.40me/100g and 58ppm on the alluvial plain, 20.0%, 5.7, 2.7%, 11.4me/100g, 0.32me/100g and 116ppm on the mountain foot slopes, and 24.6%, 5.3, 1.8%, 10.2me/100g, 0.28me/100g and 51ppm on the rolling and Hill. 4. All chemical properties did not reach the ideal value for maximizing land capability. 5. Organic matter, exchangeable cations and available $P_2O_5$ were not normally distributed. Intervals of one and two standard deviations about mean of an approximately normal distribution were calculated.

  • PDF

A Study on Penetration of Pea Seedling Taproots as Influenced by strength of Soil (토양(土壤)의 경도(硬度)가 완두뿌리의 신장(伸長)에 미치는 영향(影響))

  • Jo, In-Sang;Cho, Seong-Jin;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 1977
  • This experiment was conducted in the laboratory in order to find out the relationships between the root growth and soil physical properties. The soils selected for this study were Sangju sandy loam, Yeongog loam, Hwadong silty clay loam, which have been considered to be a typical upland soils of Korea. Artificial core samples were made with various moisture contents and bulk densities. Elongation rate of pea seedling taproot and soil strength were measured respectively in these core samples. The results obtained are summarized as follows: 1. The soil strength increased with the bulk density and deceased with moisture content. 2. The correlation between root elongation and soil bulk density was significantly recognized at the same moisture content and the root elongation was influenced by the bulk density more significantly at dry condition. 3. The elongation rate of pea seedling taproot was significantly decreased by increasing the strength (Yamanaka tester and Fine probe) of the soils. 4. The soil strength of $21kg/cm^2$ in fine metal probe or 24mm in Yamanaka tester was considered to be the critical point for plant growth, which was restricting root elongation smaller than 1/4 of the maximum growth rate.

  • PDF

Soil Physico-chemical Properties of Red pepper Fields and Plant Growth (밭토양(土壤) 물리성(物理性)과 고추 생육(生育)과의 상관(相關) 연구(硏究))

  • Jo, In-Sang;Hur, Bong-Koo;Kim, Lee Yul;Cho, Young Kil;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.205-208
    • /
    • 1987
  • This study was conducted to find out the optimum ranges of soil physical properties for red pepper growth by characterizing the relationship of soil physical properties and plant growth. Various environmental factors and soil physico-chemical properties and red pepper growth were investigated at 94 farmers fields in red pepper-growing area. Soil texture of the red pepper fields were mainly coarse loamy covering 72% of surveyed fields. Available soil depth, plowing layer and root zone were deeper, but bulk density and hardness of soils were lower in the area where red pepper grew well. The optimum ranges of soil three phases were identified as the solid phase below 50%, liquid phase above 10% and sir phase above 20%. The various soil physical properties were closely related with plant growth of red pepper which were highly influenced in order of available depth>bulk density>plowing layer>hardness>slope.

  • PDF

Effects of Soil Conditioners Application on the Change of Soil Properties and Soybean Yield in a Sandy Loam Soil (사질(砂質)밭에서 토양개량제(土壤改良劑) 처리(處理)가 토양(土壤特性)과 대두수량(大豆收量)에 미치는 영향(影響))

  • Hur, Bong-Koo;Jo, In-Sang;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.296-300
    • /
    • 1989
  • This study was carried out to evaluate the effects of clay loam soil, zeolite, and high molecular organic compounds on the improvement of soil physico-chemical properties and soybean yield in a sandy loam soil. Soybean was cultivated from 1987 to 1988. CEC, moisture retention of soil were increased, but soil bulk density and hardness were decreased by soil conditioners. Clay loam soil addition enhanced the soybean yield by 5% at 10ton 10a plot, 7% at 20ton/10a plot. Also zeolite application increased the soybean yield by 6~10%. Effects of soil conditioner application of the 1rst year were greater than that of 2nd year. Some experiments were conducted in laboratory for the effect of soil conditioners on soil physical properties. The nutrient and water holding capacity were highest by K-SAM treatment, but the soil aggregates was most stable by AN-905SH and Primal treatments.

  • PDF

우리나라 토양의 중금속 오염과 대책

  • 류순호;한광현
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.05a
    • /
    • pp.15-33
    • /
    • 1996
  • 우리나라의 토양은 지형적인 요인과 토양모재 및 기후적인 조건에 의해 토양에 유입되는 유해물질에 대한 보유력이 낮은 특성으로 인해 외부에서 유입되는 유해 중금속에 대하여 취약한 특성을 가지고 있다. 우리나라 토양의 중금속 자연 함유량은 논토양의 경우 Cd 0.13, Cu 4.15, Pb 4.17, Zn 3.95 mg/kg의 수준이며 밭토양은 Cd 함량이 논토양보다 높은 수치를 보인다. 과수토양은 과거에 중금속이 함유된 영농자재가 투입된 결과로 자연함량을 결정하기 힘드며 매우 높은 중금속 농도를 보인다. 그리고 현재 토양환경보전법이 시행되어 중금속류 및 유해유기물에 대한 오염기준을 제시하고 있다. 토양의 중금속 오염현황은 환경부의 토양오염 측정망에서 금속광산, 제련소, 매립지 부근에서 높은 농도를 나타내고 있으며, 산업폐수 및 생활하수가 관개수로 유입되는 논토양에서 중금속 오염이 우려되고 있다. 제련소 및 금속광산 부근의 토양은 거리에 따라 중금속 농도가 감소하는 경향을 보이고 있으나 인접지역에서는 규제농도에 육박하거나 초과하고 있다. 또한 폐광산 부근에서 생산된 현미 역시 전반적으로 작물재배제한 기준를 초과하지는 않으나 상당 지역이 이 기준을 초과하고 있으며 0.1 M HCl로 침출가능한 Cd 함량과 상관관계를 보인다. 이 상관관계에 의하면 0.1 M HCl로 침출가능한 토양 중 Cd의 양이 5 mg/kg 이면 생산된 현미의 Cd 함량이 1 mg/kg을 초과할 확률은 40%인 반면, 일본 식량청 수거대상인 0.4 mg/kg을 초과할 가능성은 100%로 파악된다. 광명시 가학광산 인근 지역을 대상으로 한 중금속 오염에 대한 대책연구에서는 현미 중 Cd 함량이 0.4 mg/kg을 초과할 가능성이 높은 지역(토양 농도 5 mg/kg)은 최소 20 cm 이상 두께로 객토를 하고, 현미 중 Cd 함량이 0.4 mg/kg 을 초과할 가능성이 낮은 지역은 석회, 규산질 비료, 용성인비, 등을 사용하여 중금속의 용해도를 낮추어 작물이행을 경시키는 것이 바람직한 것으로 판단되었다. 그리고 광미사를 현위치에서 처리하는 방안이 제시되었다.

  • PDF

Assessment of the Soil Quality of Chonan City using Soil Pollution Index (토양오염지표에 의한 천안시 토양환경 평가)

  • 장인성;정창모;임계규
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.185-192
    • /
    • 1999
  • To assess the soil quality of Chonan City, soil analyses were conducted according to the 14 different sampling sites. The soil pH of the agricultural area near the expressway was lower than that of the other farming area, which indicated that this acidification was probably attributed to the acid rain caused by the traffic exhaust gas such as SOx and NOx. Acidification was more severe in the dry farming area than in the rice paddy area. All concentration of 6 different heavy metals (As, Cu, Cd, $Cr^{6+}$, Hg, Pb) and organic contaminants (cyanide, organic-p, PCBs, phenols) were found to be lower than the standard of soil pollution. The concentration of BTEX also lower than the standard of soil pollution. An assessment using the SPI (Soil Pollution Index). which was developed to estimate an overall soil quality, was performed. Each SPC (Soil Pollution Score) were evaluated with the results of the data from this study. The soil quality of most area of Chonan City was determined to Class 1 , which indicated that the soil was healthy.

  • PDF

Estimation of spatiotemporal soil moisture distribution for Yongdam-dam watershed using Sentinel-1 C-band Synthetic Aperture Radar images (Sentinel-1 C-band SAR 영상을 이용한 용담댐 유역의 시공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Jang, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.162-162
    • /
    • 2020
  • 토양수분은 TDR(Time Domain Reflectometry)이나 Tensiometer 등의 장비를 이용하여 측정을 시행하고 있으나, 이를 위해서는 많은 인력과 경제적 자원이 소비될 뿐만 아니라 시공간적으로 측정할 수 있는 범위에 한계가 있다. 지상 관측의 대안으로 MIRAS(Microwave Imaging Radiometer with Aperture Synthesis)나 SMAP(Soil Moisture Active Passive), AMSR2(Advanced Microwave Scanning Radiometer 2) 등의 수동 마이크로파 위성 센서를 이용한 공간 토양수분 관측이 수행되었으나, 낮은 공간 해상도(9~36km)는 지역 규모의 토양수분 분포를 나타내기 충분하지 않고, 높은 불확실성을 내포하고 있다. 본 연구에서는 금강 상류의 용담댐 유역(930.0㎢)을 대상으로 Sentinel-1 C-band SAR(Synthetic Aperture Radar) 영상을 이용한 토지 피복 및 토양 속성을 고려한 10m 해상도의 토양수분 산출을 수행하였다. 용담댐 유역은 산림 79.7%, 논 9.0%, 밭 5.4%, 주거지 2.9%의 토지 피복 비율을 가지며 토양은 사양토(66.6%)와 양토(20.9%)가 우세하다. Sentinel-1 C-band SAR 영상은 SeNtinel Application Platform(SNAP)을 이용하여 전처리 후, 후방산란계수로 변환하였다. 토양수분 알고리즘은 TU-Wien change detection algorithm과 Regression model을 활용하였고, 검증을 위한 실측 토양수분 자료는 한국수자원공사(K-water)에서 제공하는 5년(2014~2018)간의 토양수분 관측자료를 이용하였다. 산출된 토양수분은 결정계수(Coefficient of determination, R2) 및 평균제곱근오차(Root Mean Square Error, RMSE)를 이용하여 실측 토양수분과 비교하였다. Sentinel-1 C-band SAR 영상을 이용한 고해상도의 토양수분 산출은 토지 피복 및 토양 속성을 고려한 지역 규모의 공간 토양수분 분포 및 시간적 변화를 표현 가능할 것으로 판단된다.

  • PDF

Corrosion Rate of Structural Pipes for Greenhouse (온실 구조용 파이프의 부식속도 검토)

  • Yun, Sung-Wook;Choi, Man Kwon;Lee, Si Young;Moon, Sung Dong;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.333-340
    • /
    • 2015
  • Because soils in reclaimed lands nearby coastal areas have much higher salinity and moisture content than soils in inland area, parts of greenhouses embedded in such soils are exposed to highly corrosive environments. Owing to the accelerated corrosion of galvanized steel pipes for substrucrture and structure of greenhouses in saline environments, repair and reinforcement technologies and efficient maintenance and management for the construction materials in such facilities are required. In this study, we measured the corrosion rates of the parts used for greenhouse construction that are exposed to the saline environment to obtain a basic database for the establishment of maintenance and reinforcement standards for greenhouse construction in reclaimed lands with soils with high salinity. All the test pipes were exposed to soil and water environments with 0, 0.1, 0.3, and 0.5% salinity during the observation period of 480 days. At the end of the observation period, salinity-dependent differences of corrosion rate between black-surface corrosion and relatively regular corrosion were clearly manifested in a visual assessment. For the soils in rice paddies, the corrosion growth rate increased with salinity (0.008, 0.027, 0.036, and $0.043mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively). The results for the soils in agricultural fields are 0.0002, 0.039, 0.040, and $0.039mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively. The higher corrosion rate of rice-paddy soil was associated with the relatively high proportion of fine particles in it, reflecting the general tendency of soils with evenly distributed fine particles. Hence, it was concluded that thorough measures should be taken to counteract pipe corrosion, given that besides high salinity, the soils in reclaimed lands are expected to have a higher proportion of fine particles than those in inland rice paddies and agricultural fields.

Soil Physical Properties of Upland Soil in relation to Soil Moisture (밭토양의 물리성(物理性)과 수분문제(水分問題))

  • Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.61-65
    • /
    • 1973
  • Analysis of data in the Official Soil Series Description showed the dominant texture of upland soils is SiL, of which available water range is 21.1% highest among textures. Analyses of data in the N, P, K Trials on Barley in 1964/65-1968/69, and N, P, K and Soil Improvement Trials on upland Crops in 1961-1969 were made to relate fertilizer response to the amount of rainfalls during the growing season. Correlation between nitrogen response and the amount of rainfalls was observed but not between P and K and the amount of rainfalls. Some of physical properties were discussed to seek feasible means for increasing available water.

  • PDF

Studies on Plant Parasitic Nematodes in the Fields of Codonopsis lanceolata (더덕(Codonopsis lanceolata) 재배지 기생선충의 발생상황)

  • 정도철;한상찬
    • Korean Journal of Plant Resources
    • /
    • v.16 no.3
    • /
    • pp.200-206
    • /
    • 2003
  • This study were conducted to assess plant­parasitic nematodes infesting Codonopsis lanceolata. Ten kinds of plant­parasitic nematode gem including Meloidogyne and Pratylenchus were identified in 34 localities of C. lanceolata fields in three provinces in Korea. Meloidogyne, a dominant genus, was found in 97% localities and showed high average density as 1,700 nematodes per 300$m\ell$ soil. Its average density was 10 times higher in upland field than in paddy field.