• Title/Summary/Keyword: 방호.방폭

Search Result 20, Processing Time 0.024 seconds

Development of Impact·blast resistant hight performance fiber composite panel (방호·방폭용 고성능 복합섬유 패널 기술개발)

  • Kim, Woon-Hak;Kang, Seok-Won;Yun, Seung-Gyu
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.130-131
    • /
    • 2015
  • 이 논문은 패널의 각 단층 구성 재료에 고인장, 경량화, 부착성능, 내화성능 등을 향상시켜 단층 각각의 개별적인 특수 성능과 복합패널 구성물로서의 방호방폭 성능을 극대화 할 수 있는 섬유복합패널 외피와 충전재(나노복합소재) 및 접착제에 대한 기초 연구를 수행하였다.

  • PDF

Structural Analysis of Impact·Blast Resistant Composite Panel using ACP and AUTODYN (ACP와 AUTODYN을 이용한 방호·방폭 보강 복합패널 구조해석)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.432-439
    • /
    • 2016
  • To make a model of a Impact/Blast resistant composite material and perform the analysis, material properties of the composite material are required. In order to obtain such a property value, it is necessary to input the result obtained by performing a lot of material tests by the calculation formula of the situation, and there is a lot of difficulty in the case of a special purpose material which is not a general material. In this study, modeling and structural analysis of composite fiber panels for protection and explosion - proofing were performed in ACP(ANSYS Composite PrePost) and AUTODYN by applying the application properties of composites provided in Ansys Workbench environment.

A Study on Material Properties of Composite Panel for Impact·Blast Resistance (방호·방폭 보강용 복합패널의 재료특성에 관한 연구)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.373-380
    • /
    • 2016
  • In order to develop composite fiber panels that can maximize the protection and blast resistance of the existing structures by improving lightweight, high-strength and fireproof performances of the single layer material of precast panels, the basic properties of the inner and outer covers that are mixed with aramid fibers (AF) and polyester fibers (PF) were evaluated in this study. Also, a basic study was performed on the performance of composite fiber panels by testing Nano-sized composite materials that are lightweight and excellent in fire resistance for their compressive strength, bending strength and tensile strength.

Basic Study on Fiber Composite Panel Production for Impact·Blast Resistant (방호·방폭 보강용 복합섬유 패널 제작을 위한 기초연구)

  • Kim, Woonhak;Kang, Seokwon;Yun, Seunggyu
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.235-243
    • /
    • 2015
  • The methods to improve the protection and explosion-proof performance of concrete structures include the backside reinforcement or concrete material property improvement and the addition of structural members or supports to increase the resistance performance, but they are inefficient in terms of economics and structural characteristics. This study is about the basic study on the fiber composite panel cover, and the nano-composite material and adhesive as the filler, to maximize the specific performance of each layer and the protection and explosion-proof performance as the composite panel component by improving the tensile strength, light weight, adhesion and fire-proof performances. The fiber composite panel cover (aramid-polyester ratios of 6:4 and 6.5:3.5) had a 2,348 MPa maximum tensile strength and a 1.8% maximum elongation. The filler that contained the nano-composite material and adhesive had a 4 MPa maximum tensile shear adhesive strength. In addition, the nano-composite filler was 30% lighter than the normal portland cement

A Study on Status Survey for the Improvement of Shelter Facilities for Residents (주민대피시설의 성능개선을 위한 실태조사에 관한 연구)

  • Park, Namkwun;Kang, Shinwook
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2014
  • purpose of this study was to conduct status survey on existing shelter facilities for residents and use it as basic material to plan and design improved shelter facilities in the future. As the result, first, although existing shelter facilities are judged to have been designed in consideration only of the protection from high explosive shells, actual protection capability is significantly low against high explosive shells when exit direction and protection capabilities of main entrances were investigated. Second, all the 7 facilities did not have air purifier with filters installed for the air that flows into the inside from outside and since the height of air exhausts and intake pipes in the outside are also close to the earth, there are possibilities that heavy contaminated air can flow into the inside. Third, although some facilities have anti-explosion doors installed, it is impossible to use them as chemical, biological and radiological (CBR) shelter because of improper installation of openings and anti-explosion valves as well as poor plumbing that cannot ensure air-tightness and poor finish of piping penetration.

A Study on the Rheology Properties for Development of Sprayed High Performance Fiber Reinforced Cementitious Composites for Protection and Blast Resistant (방호·방폭용 뿜칠형 고성능 섬유보강 시멘트 복합재료 개발을 위한 레올로지 특성 연구)

  • Choi, Yun-Wang;Choi, Byung-Keol;Park, Man-Seok;Sung, Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.188-195
    • /
    • 2014
  • This paper was evaluated the rheology properties according to each step of paste, mortar and HPFRCC as a part of the basic study to development of sprayed high performance fiber reinforced cementitious composites(HPFRCC) for protection and blast resistant. Rheology test results in step of paste, in case of GGBFs and FA, it showed that the plastic viscosity and yield stress reduced gradually according to the increase of mixing rate, and in case of SF, the plastic viscosity and yield stress increased radically starting from the mixing rate of 10%. Rheology test results in step of mortar, type of aggregates, it showed that particle shape and grading of aggregate is influence on plastic viscosity and yield stress, and change of volume ratio is influence on plastic viscosity than yield stress. Fluidity and rheology test results in step of HPFRCC, if after a fiber mixed, it showed that viscosity agent is more effective to improve the fluidity and fiber dispersion than superplasticizer.

A Basic Research for Ductile Hybrid Fiber Composite Panels of Materials (유사연성 하이브리드 섬유를 이용한 복합패널의 구성 재료 기초 연구)

  • Kim, Woonhak;Kang, Seokwon;Hwang, Seongwoon
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.3
    • /
    • pp.388-395
    • /
    • 2014
  • In this paper, usability and use force on the structure and does not have a big impact on the development of existing materials developed using materials to their full impact/blast resistant Complex configuration on the panel that can be implemented. Each material of the characteristics so that they can exert in layers of layer formed panels in layers. Structure of the general structure is to keep strength and endurance, maintenance and minimize the damage can be utilized for knee brace to do basic research, for creating the panel.

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

FE Analysis on the Structural Behavior of the Single-Leaf Blast-Resistant Door According to Design Parameter Variation (설계변수에 따른 편개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Won-Woo;Park, Gi-Joon;Lee, Nam-Kon;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.259-272
    • /
    • 2019
  • Steel-concrete single-leaf blast-resistant doors are protective structures consisting of a steel box and reinforced concrete slab. By the domestic blast-resistant doors, the structure is not designed efficiently because few studies have examined the effects of variables, such as the blast pressure, rebar ratio, and steel plate thickness on the structural behavior. In this study, the structural behavior of the doors was analyzed using the FE method, and the support rotation and ductility ratio used to classify the structural performance were reviewed. The results showed that the deflection changes more significantly when the plate thickness increases than when the rebar spacing is a variable. This is because the strain energy absorbed by the door is reduced considerably when the plate thickness increases, and as a result, the maximum deflection becomes smaller. According to a comparison of the calculated values of the support rotation and the ductility ratio, the structural performance of the doors could be classified based on the support rotation of one degree and ductility ratio of three. On the other hand, more explosion tests and analytical studies will be needed to classify the damage level.