• Title/Summary/Keyword: 방폭성능

Search Result 48, Processing Time 0.025 seconds

Analytical Study on Effects of Gravity Load on Blast Resistance of Steel Compressive Members (강재압축재의 방폭성능에 대한 중력하중효과의 해석적 연구)

  • Lee, Kyungkoo;Lee, Moon Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.273-280
    • /
    • 2015
  • Equivalent Single-Degree-of-Freedom(SDOF) analysis, most used for blast-resistant design, does not consider the effects of gravity load on the performance evaluation of blast resistance of structural members. However, since there exists gravity load on columns and walls of structures, the blast resistance of structural members should be evaluated considering gravity load on them. In this paper, an approach to reflect the gravity load effects on the equivalent SDOF analysis for dynamic blast response of structural members is proposed. For this purpose, the parametric studies using finite element analysis were performed by varying maximum blast load, blast load duration, and gravity load with constant the resistance and natural period of a structural member. The finite element analysis results were compared with the equivalent SDOF analysis results and the blast response of the structure member was estimated by conducting finite element analyses for various gravity loads. Finally, a graphical solution for ductility of a structural member with the variables of blast load, gravity load and structural member properties was developed. The blast response of structural members under gravity load could be estimated reasonably and easily by using this graphical solution.

FE Analysis on the Structural Behavior of the Single-Leaf Blast-Resistant Door According to Design Parameter Variation (설계변수에 따른 편개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Won-Woo;Park, Gi-Joon;Lee, Nam-Kon;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.259-272
    • /
    • 2019
  • Steel-concrete single-leaf blast-resistant doors are protective structures consisting of a steel box and reinforced concrete slab. By the domestic blast-resistant doors, the structure is not designed efficiently because few studies have examined the effects of variables, such as the blast pressure, rebar ratio, and steel plate thickness on the structural behavior. In this study, the structural behavior of the doors was analyzed using the FE method, and the support rotation and ductility ratio used to classify the structural performance were reviewed. The results showed that the deflection changes more significantly when the plate thickness increases than when the rebar spacing is a variable. This is because the strain energy absorbed by the door is reduced considerably when the plate thickness increases, and as a result, the maximum deflection becomes smaller. According to a comparison of the calculated values of the support rotation and the ductility ratio, the structural performance of the doors could be classified based on the support rotation of one degree and ductility ratio of three. On the other hand, more explosion tests and analytical studies will be needed to classify the damage level.

A study on stabilized power source in intrinsic safety system (본질안전방폭시스템 전원의 안정화에 관한 연구)

  • Lee Chun-Ha;Lee Chang-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.1 s.22
    • /
    • pp.18-24
    • /
    • 2004
  • This study issues the component's ratings when low powered do intrinsic safety instrumentations using in flammable atmospheres. Test of reverse bias of zener diode characteristics and ignition characteristics test for power source consist of zener diode and resistor have done using IEC spark test apparatus. With this test, the ratings for zener diode and resistor are calculated and the design method of intrinsically safe power supply system is reported.

  • PDF

Dynamic Characteristics Stiffened Blast-wall Structures Subjected to Blast Loading Considering High Strain-rate Effects (고속 변형률속도 효과를 고려한 폭발하중을 받는 보강형 방폭벽 구조의 동적 특성)

  • Kim, Gyu Dong;Noh, Myung Hyun;Lee, Jae Yik;Lee, Sang Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.65-74
    • /
    • 2016
  • A finite element dynamic simulation is performed to gain an insight about the stiffened blast wall structures subjected to blast loading. The simulation was verified using qualitative and quantitative comparisons for different materials. Based on in-depth examination of blast simulation recordings, dynamic behaviors occurred in the blast wall against the explosion are determined. Subsequent simulation results present that the blast wall made of the high performance steel performs much better in the shock absorption. In this paper, the existing finite element shock analysis using the LS-DYNA program is further extended to study the dynamic response of the stiffened blast wall made of the high-performance steel considering high strain-rate effects. The numerical results for various parameters were verified by comparing different material models with dynamic effects occurred in the stiffened blast wall from the explosive simulation.

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

Automation System of Explosion-Proof Panel Condition (방폭 패널 컨디션 자동화 시스템(1))

  • Hwang, Dae-Hyeon;Choi, Kwang-Il;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.253-258
    • /
    • 2020
  • Petrochemical industry complex in Korea always has high riskiness due to explosive and inflammable gases. To prevent these explosion, most facility of petrochemical industry complex requires the performance of explosive proof. The control panel, which is used as explosive proof, has been used the air injection method by manually from outside to constantly keep the temperature and pressure between inside and outside of the panel. In this paper, we propose the automatic temperature controller, which performs automatic heating and cooling according to temperature inside the panel in order to control temperature automatically.

밀폐공간에서의 Dummy 존재시 가스 폭발특성에 관한 연구

  • Kim, Jong-Bok;Oh, Kyu-Hyung;Lee, Sung-Eun;Kim, Hong;Lee, Young-Chul;Park, Seung-Soo
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.87-92
    • /
    • 1999
  • 최근 우리나라에서는 가스사용시설의 확대, 석유화학 플랜트의 급격한 성장 및 LNG, 원유 등의 운반에 필요한 특수선의 증가등으로 인하여 사회 일상주변에 각종의 인화성 액체 또는 폭발성가스가 존재하는 기회가 많아 졌으며, 폭발성 위험물질의 취급이 점차 대규모화, 다양화, 복잡화 되어가고 있다. 이러한 현실속에서 폭발사고 방지에 대한 연구와 폭발성가스가 존재하거나 존재할 우려가 있는 위험장소에서 사용되는 방폭형 전기기기의 방폭성능에 대한 확인과 안전성을 평가하는 기술의 확립이 필요하다. (중략)

  • PDF

Analysis of Rebound Behavior of Blast-Resistant Door Subjected to Blast Pressure (폭압 작용에 의한 방폭문의 반발거동 해석)

  • Shin, Hyun-Seop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.371-383
    • /
    • 2021
  • Steel-concrete single-leaf blast-resistant doors, having steel box and slab inside, are installed on the wall using supporting members such as hinges and latches. Several studies have been conducted on their deflection behavior in the same direction as that of the blast pressure, but studies on their deflection behavior in the opposite direction, that is, studies on negative deflection behavior are relatively insufficient. In this study, we conducted a parameter analysis using finite element analysis on blast-resistant doors, on their rebound behavior in the negative deflection phase. Results revealed that the plastic deformation of the door, and the change in momentum and kinetic energy during rebound, were major factors influencing the rebound behavior. Greater rebound force was developed on the supporting members in the impulsive region, than in the quasi-static region; due to the characteristics in the impulsive region, where the kinetic energy developed relatively greater than the strain energy. In the design process, it is necessary to consider excessive deformation that could occur in the supporting members as the rebound behavior progresses. Additionally, it was found that in the case of steel-concrete blast doors, the rebound force increased relatively more, when the effects of both rebound and negative blast pressure contributed to the negative deflection of the door. Since conditions for the occurrence of this superposition effect could vary depending on structural characteristics and explosion conditions, further investigation may be required on this topic.