• Title/Summary/Keyword: 방조제 끝막이 구간 흐름

Search Result 4, Processing Time 0.024 seconds

Seepage Behavior of Sea Dyke Final Closure with Installation of Bottom Protection Filter Mat (근고공 필터매트 설치에 따른 방조제 끝막이구간의 침투거동)

  • Oh, Young-In;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2006
  • Sea dyke construction is simply defined as a cutting procedure of sea water flow. Sea dyke construction is more difficult than in-land construction because it is placed on deep seabed and exposed sea wave attack. Especially, the final closure of sea dyke is most dangerous due to the fast velocity of tidal flow. The final closure is consisted with vast rubble and heavy stone gabion, therefore the discharge velocity at land side of final close section is irregularly and sometime occur the fast discharge velocity. In this paper, the seepage model test performed to evaluate seepage behavior of final closure and continuous sea dyke section such as discharge velocity, hydraulic gradient, and phreatic line with installation of bottom protection filter mat. Based on the seepage model test results, the maximum discharge velocity of final closure section is 1.7m/sec and the discharge velocity is decreased maximum 23.7% with installation of bottom protection filter mat.

  • PDF

Identifying Three-Dimensional Hydraulic Characteristics of the Sea Region Under Combined Tidal Current and Shock Waves (조류와 충격파가 혼재한 해역의 3차원적 수리특성 분석)

  • Kang, Min Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.339-346
    • /
    • 2009
  • In this study, the flow characteristics of the sea region, where tidal current and shock waves are combined, are identified using a three-dimensional numerical model (Princeton Ocean Model, POM). The model is adopted and applied for simulating the flows of the sea region near the open sections during the seadike closure work of Sihwa Seadike which was closed in 1994. The simulation results show that the shock waves with high velocities propagate through the sections toward the inside and outside of the seadike during the periods of the spring and ebb tides, respectively. It is found that the phenomena of flow separation occur near the shock waves; as the shock waves extend to wider zones after passing the sections, their effects on the tidal current become weak. In addition, the longitudinal velocity profiles of the flows are revealed to be affected by the shock waves. For all the simulations, at the ebb tide, the drawdown of the water levels occurs in front of the open section, respectively, especially, hydraulic jump occurs when simulating the case of maximum difference in water level between the inside and outside of the seadike. As a result, it is thought that the flow characteristics of the sea region dominated by shock waves need to be identified employing three-dimensional analysis approach, which is expected to provide the information for ocean engineering works and facility management.

Form Drag Factor of Contracted Flow (축소단면흐름 형상항력계수)

  • 권순국;유동훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.82-89
    • /
    • 1995
  • The efforts of formulation have been reviewed and the results of existing laboratory experiments are investigated in order to describe the contracted flow which occurs at the final closure of sea dike construction. The regional characteristics of contracted flow is analyzed by checking the drawdown curve, and Chezy's mean velocity equation is employed to estimate the discharge rate at the closure. Weir-type discharge equations are reviewed, which are derived from Bernoulli equation, and the problems of the equations are discussed. Chezy's mean velocity equation is considered to be widely and generally applicable, and the empirical factor introduced in Chezy's equation is named 'form drag factor' since it is primarily dependent on the form drag caused by the contraction of discharge area. Laboratory experiments were conducted mainly in order to investigate the variation of form drag factor against various parameters, and an empirical equation is developed for the estimation of form drag factor.

  • PDF

Case History of Sea Dyke Filter Construction Using Geotextile Tube Mattress (튜브형 매트리스를 활용한 방조제 필터공 축조사례연구)

  • Oh, Young-In;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2007
  • Geotextile is one of the most useful and effective polymer material in civil construction works and the main function of geotextile is separation, reinforcement, filtering and drainage. Recently, because of the shortage of natural rock, traditional forms of river and coastal structures have become very expensive to build and maintain. Therefore, the materials used in hydraulic and coastal structures are changing from the traditional rubble and concrete systems to the cheaper materials and systems. One of these alternatives employs geotextile tube technology in the construction of coastal and shore protection structures, such as embankment, see dyke, groins, jetties, detached breakwaters and so on. Geotextile tube technology has changed from being an alternative construction technique and, in fact, has advanced to become the most effective solution of choice. This paper presents case history of sea dyke filter construction using geotextile tube mattress and also, various issues related to the tube mattress design and construction technology.

  • PDF