• Title/Summary/Keyword: 방위탐지

Search Result 171, Processing Time 0.024 seconds

Design and Implementation of FMCW Radar Based on two-chip for Autonomous Driving Sensor (자율주행센서로서 개발한 2-chip 기반의 FMCW MIMO 레이다 설계 및 구현)

  • Choi, Junhyeok;Park, Shinmyong;Lee, Changhyun;Baek, Seungyeol;Lee, Milim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2022
  • FMCW(Frequency Modulated Continuous Wave) Radar is very useful for vehicle collision warning system and autonomous driving sensor. In this paper, the design and implementation of FMCW radar based on two chip MMIC developed as an autonomous driving sensor was described. Especially, generation of frame-based and chirp-based waveform generation and signal processing are mixed to have the strength of maximum detection speed and compensation of speed. This implemented system was analyzed for performance and commercialization potential through lab. test and driving test in K-city.

A DDoS Attack Detection of private mobile network using Time Series Analysis (시계열 분석을 적용한 사설 모바일 네트워크의 DDoS 공격 탐지)

  • Kim, Dae Hwan;Lee, Soo Jin;Pyo, Sang Ho
    • Convergence Security Journal
    • /
    • v.16 no.4
    • /
    • pp.17-24
    • /
    • 2016
  • Many companies and organizations are building a mobile office environment using the LTE network, the national disaster network and Air Force LTE network are built for public safety and national defense. However the recent threats on information security have been evolving from information leakage to DDoS attacks to neutralize the service. Especially, the type of device such as Smart phones, smart pad, tablet PC, and the numbers are growing exponentially and As performance of mobile device and speed of line develop rapidly, DDoS attacks in the mobile environment is becoming a threat. So far, universal countermeasure to DDoS attacks has been interception the network and server step, Yet problem regarding DDoS attack traffic on mobile network and expenditure of network resources still remains. Therefore, this paper analyzes the traffic type distributed in the private mobile network such as the National Disaster Network, and Air Force LTE network in order to preemptively detect DDoS attacks on terminal step. However, as direct analysis on traffic distributed in the National Disaster Network, and Air Force LTE network is restricted, transmission traffics in Minecraft and uploading video file upload which exhibit similar traffic information are analyzed in time series, thereby verifing its effectiveness through establishment of DDoS attacks standard in mobile network and application that detects and protects DDoS attacks

Forest Fire Monitoring System Using Satellite (위성활용 산불감시 시스템 구축)

  • Park, Beom-Sun;Cho, In-Je;Lim, Jae-Hwan;Kim, In-Bae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.143-150
    • /
    • 2021
  • It introduces the contents of establishing a geostationary satellite-based forest fire monitoring system that can monitor areas of the Korean Peninsula 24 hours a day for forest fire monitoring, and describes how to establish a forest fire monitoring system and use it in various ways. In order to establish a satellite-utilized forest fire monitoring system, we will describe and draw conclusions on literature research, technical principles, forest fire monitoring means, and satellite forest fire monitoring system. The satellite-utilized forest fire monitoring system can consist of one geostationary satellite equipped with infrared detection optical sensors and a ground processing station that processes data received from satellites to spread surveillance information. Forest fire monitoring satellites are located in the country's geostationary orbit and should be operated 24 hours a day, 365 days a day. Forest fire monitoring technology is an infrared detection technology that can be used in national public interests such as forest fire monitoring and national security. It should be operated 24 hours a day, and to satisfy this, it is efficient to establish a geostationary satellite-based forest fire monitoring satellite system.

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.

Detection of Artificial Displacement of a Reflector by using GB-SAR Interferometry and Atmospheric Humidity Correction (GB-SAR 간섭기법을 이용한 반사체의 인위적 변위탐지 및 대기습도보정)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hun;Kim, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.123-131
    • /
    • 2010
  • In this paper we applied Ground-Based Synthetic Aperture Radar(GB-SAR) interferometry to detect artificial displacement of a reflector and performed an atmospheric humidity correction to improve the accuracy. A series of GB-SAR images were obtained using a center frequency of 5.3 GHz with a range resolution of 25 cm and a azimuth resolution of $0.324^{\circ}$, all in full-polarization (HH, VV, VH, HV) modes. A triangular trihedral corner reflector was located 160 m away from the system, and the artificial displacements of 0-40 mm was implemented during the GB-SAR image acquisition. The result showed that the RMS error between the actual and measured displacements, averaged in all polarization data, was 1.22 mm, while the maximum error in case of the 40 mm displacement was 2.72 mm at HH-polarization. After the atmospheric correction with respect to the humidity, the RMS error was reduced to 0.52 mm. We conclude that a GB-SAR system can be used to monitor the possible displacement of artificial/natural scatterers and the stability assessment with sub-millimeter accuracy.

Underwater Target Information Estimation using Proximity Sensor (근접센서를 이용한 수중 표적 정보 추정기법)

  • Kim, JungHoon;Yoon, KyungSik;Seo, IkSu;Lee, KyunKyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.174-180
    • /
    • 2015
  • In this paper, we propose the passive sonar signal processing technique for estimating target information using proximity sensor. This algorithm is performed by single sensor which is constituted underwater sensor network and has a hierarchical structure. The estimated parameter is the velocity, the depth, the distance and bearing at CPA situations and we can improve the accuracy of signal processing techniques through having a hierarchical structure. We verify the performance of the proposed method by computer simulation and then we check the result that 20% error can be occurred in maximum detectable range. We also confirm that proposed method has the reliability in the actual sea environment through the sea experiment.

A Study on Block Processing Approach for Mono-Static Terrain Imaging Radar (모노스태틱 지형 영상 레이더의 블록 처리 기법 연구)

  • Ha, Jong-Soo;Cho, Byung-Lae;Lee, Jung-Soo;Park, Gyu-Churl;Sun, Sun-Gu;Kang, Tae-Ha
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.549-557
    • /
    • 2013
  • This paper describes a block processing approach to detect targets in front of mono-static terrain imaging radar (TIR). It is difficult to employ several conventional imaging methods of the synthetic aperture radar(SAR) because the TIR is an ultra-wide-band(UWB) type of radar and employs a dechirp-on-receive process. To design an available imaging method, a block processing approach which conducts a range compression and an azimuth compression is proposed in this paper. The complete derivation of the proposed approach is presented. The results of simulations and field tests are demonstrated to show the performance and validity of the proposed approach.

Conceptual Design of Cylindrical Hydrophone Arrays for Stabilization of Receiving Characteristics under Ocean Ambient Noise (해양 배경 소음 하의 수신 특성 안정화를 위한 원통형 하이드로폰 배열의 개념 설계)

  • Noh, Eunghwy;Lee, Hunki;Ohm, Won-Suk;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.200-209
    • /
    • 2015
  • An underwater sound surveillance system detects and tracks enemy ships in real-time using hydrophone arrays, in which seabed-mounted sensor arrays play a pivotal role. In this paper the conceptual design of seabed-mounted, cylindrical hydrophone arrays for use in shallow coastal waters is performed via finite element calculations. To stabilize the receiving characteristics under the ocean ambient noise, a technique for whitening the ambient noise spectrum using a metal baffle is proposed. Optimization of the array configuration is performed to achieve the directivity in the vertical and azimuthal directions. And the effects of the sonar dome shape and material on the structural vibration and sound scattering properties are studied. It is demonstrated that a robust hydrophone array, having a sensitivity deviation less than 4 dB over the frequency range of interest, can be obtained through the whitening of the ambient noise, the optimization of the array configuration, and the design of acoustically transparent sonar domes.

Feasibility Study of Forward-Looking Imaging Radar Applicable to an Unmanned Ground Vehicle (무인 차량 탑재형 전방 관측 영상 레이다 가능성 연구)

  • Sun, Sun-Gu;Cho, Byung-Lae;Park, Gyu-Churl;Nam, Sang-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1285-1294
    • /
    • 2010
  • This study describes the design and verification of short range UWB(Ultra Wideband) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. We describe the relationship between bandwidth of transmitting signal and range resolution. A vivaldi antenna is designed and it's radiation pattern and reflection are measured. It is easy to make array antenna because of small size and thin shape. Aperture size of receiving array antenna is determined by azimuth resolution of radar image. The relation of interval of receiving antenna array, image resolution and aliasing of target on a radar image is analyzed. A vector network analyzer is used to obtain the reflected signal and corner reflectors as targets are positioned at grass field. Applicability of the proposed radar to UGV is proved by analysis of image resolution and penetrating capability for grass in the experiment.

Autofocus Phase Compensation of Velocity Disturbed UUV by DPC Processing with Multiple-Receiver (다중 수신기 DPC 처리에 의한 속도 교란 수중 무인체의 자동초점 위상 보상)

  • Kim, Boo-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1973-1980
    • /
    • 2017
  • In the case of a small UUV operating an active synthetic aperture sonar, various velocity disturbances may occur on the path due to the influence of external underwater environment, and this causes phase errors in coherent synthetic aperture processing, which has a large influence on the detected image. In this paper, when a periodic sinusoidal velocity disturbance is generated in the traveling direction, the phase generated by the round trip slope range at each position is estimated the cross correlation coefficient for multiple received signals and compensated the position variation in the overlapped DPC by the average value within the maximum allowable width. Through simulations, it has been confirmed that the images degraded by the velocity disturbance amplitude and fluctuating frequency of the UUV are removed from the false targets and the performance of azimuth resolution is improved by the proposed phase compensation method.