• 제목/요약/키워드: 방위각 센서

Search Result 126, Processing Time 0.019 seconds

Multiple Target DOA Tracking Algorithm Applicable to Arbitrarily Shaped Array (임의형상 배열센서에 적용 가능한 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • Ryu et al. proposed a multiple target DOA tracking algorithm using a linear sensor array. In Ryu's algorithm first, the signal subspace is estimated using sensor output and the angular innovations of targets are extracted from the estimated signal subspace. Next, the DOA's of targets are tracked using the angular innovations as the inputs of Kalman filters. Ryu's algorithm has good features that it has no data association problem and is efficient. However, Ryu's algorithm can't be a lied to an arbitrarily shaped array because it was proposed using linear sensor array. Actually, when the sensor array is used in the various application fields, sensors have a position error. Therefore, the sensor array can be an arbitrarily shaped array. In this paper, we propose a multiple target DOA tracking algorithm applicable to an arbitrarily shaped array, and it sustains the good features of Ryu's algorithm.

고정밀 위치 탐색을 위한 카오스 로봇에서의 방위각 센서 설계

  • Bae Yeong-Cheol
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.217-222
    • /
    • 2006
  • 카오스 로봇의 하드웨어 구현에서 로봇의 자체 또는 바퀴가 정확하기 자기 위치를 인식하고 지시한 방향과 거리만큼 이동하는 것이 가장 중요하다. 본 논문에서는 고정밀 위치 측정이 가능한 카오스 로봇에서의 방위각 센서를 설계하기 위한 VF 컨버터와 방위각 센서를 설계하는 기법을 제시하였다.

  • PDF

An Efficient Algorithm for Localizing 3D Narrowband Multiple Sources (다중표적의 효과적인 3차원 위치추정 알고리듬)

  • Lee Chul-Mok;Lee Jong-Hwan;Lee Su-Hyung;Yun Kyung-Sik;Lee Kyun-Kyung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.228-231
    • /
    • 1999
  • 3차원 공간상의 표적의 위치는 방위각, 고각, 거리의 세가지요소로 나타내어 질 수 있다. 이 논문에서는 등각적 선배열 센서로 이루어진 3개의 부분센서배열을 이용한 3차원 표적의 위치추정 알고리듬을 제안하였다. 원거리 표적의 방위각 추정 알고리듬으로 근거리 표적의 방위각을 추정하면 추정된 방위각은 실제 근거리 표적의 방위각과 고각과 거리의 비선형 대수적 관계식으로 주어진다. 제안한 알고리듬은 3개의 부분센서배열에서 각각 표적을 원거리에 있다고 가정하고 원거리입체각을 추정하여 위의 대수적 관계식을 얻은 후 이들 관계식을 연립하여 실제 근거리 표적의 위치를 추정하였다. 다중표적의 경우 각각의 부분센서배열에서 추정한 원거리입체각이 어떤 표적에 대한 추정치인지 연관시켜주는 알고리듬이 필요하다. 이 논문에서는 추정한 원거리입체각의 모든 조합으로부터 3차원 MUSIC 스펙트럼값을 비교하여 그 중 표적의 개수만큼을 선별하여 다중표적의 위치를 추정하였다.

  • PDF

Modified Multiple Target Angle Tracking Algorithm with Efficient Equation for Angular Innovation (효율적인 방위각 이노베이션 계산식을 가진 수정된 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • Ryu et al. proposed a multiple target angle-tracking algorithm with efficient equation for angular innovation, and Ryu's algorithm has good feature that it has no data association problem. Ryu's algorithm is only applicable to linear sensor array, because its efficient equation for angular innovation is derived in case of using a linear sensor array. In a many fields studying multiple target angle-tracking, the various shapes of sensor array are used. In sonar, a cylindrical sensor array is as much used as a linear sensor array, a example is hull mounted sonar. In this paper, Ryu's algorithm is modified to be applicable to cylindrical sensor array, and the tracking performance of a modified algorithm is verified by various computer simulations.

Analysis of Correlation between Geometry Elements for the Efficient Use of Satellite Stereo Images (효율적인 스테레오 위성자료 활용을 위한 기하요소 간 상관성 분석)

  • Jeong, Jaehoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.471-478
    • /
    • 2016
  • This paper proposes the results of analysis of correlation between satellite geometry elements for an effective use of satellite images. To achieve accurate positional information, stereo images have normal range of convergence and BIE (BIsector Elevation) angles which are greatly influenced by azimuth and elevation angle of individual image. In this paper, the variations of convergence and BIE angles are estimated according to azimuth angle differences between two images and each elevation angle. The analysis provided strong support for predicting stereo geometry without complex analysis of epiploar geometry or mathematics. The experiment results showed that more than 150°, 130°, and 100° azimuth angle differences need to be constructed when elevation angle of two images is 50°, 60°, and 70°, respectively, in order to make the convergence and BIE angle within normal range. The results are expected to be fully used for various application using stereo images.

Construction of Measuring System for Magnetic Properties Measurement of Azimuth Angle Sensor (방위각센서의 자기특성 측정 장치 제작)

  • Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • North indicating azimuth angle sensors have been used in airplanes, ships traditionally and nowadays employed in smart phones. For the azimuth and roll angle measurement of the sensor, 3-axis acceleration sensor was added to the 3-axis magnetic field sensor. In this work, we have constructed a measuring system for the measurement of the magnetic field and the angle uncertainty of the magnetic field sensors. Measuring system could be useful not only in non-magnetic laboratory but also in normal laboratory, we constructed small size of 3-axis Helmholtz coils for the compensation environment magnetic field (Earth magnetic field and magnetic field from building) and the generation of magnetic field for the test of magnetic field sensor. The constructed measuring system could compensate environment magnetic field below 10 nT level and generate 3-dimensional magnetic field with magnitude uncertainty of 0.2 % and angle error of $0.2^{\circ}$ within the volume of ${\pm}30mm$ diameter at center of Helmholtz coils. For the conformation of developed measuring system, We tested commercially available 3-axis magnetometer and heading sensor.

Wideband adaptive beamforming method using subarrays in acoustic vector sensor linear array (부배열을 이용한 음향벡터센서 선배열의 광대역 적응빔형성기법)

  • Kim, Jeong-Soo;Kim, Chang-Jin;Lee, Young-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.395-402
    • /
    • 2016
  • In this paper, a wideband adaptive beamforming approach for an acoustic vector sensor linear array is presented. It is a very important issue to estimate the stable covariance matrix for adaptive beamforming. In the conventional wideband adaptive beamforming based on coherent signal-subspace (CSS) processing, the error of bearing estimates is resulted from the focusing matrix estimation and the large number of data snapshot is necessary. To alleviate the estimation error and snapshot deficiency in estimating covariance matrix, the steered covariance matrix method in the pressure sensor is extended to the vector sensor array, and the subarray technique is incorporated. By this technique, more accurate azimuth estimates and a stable covariance matrix can be obtained with a small number of data snapshot. Through simulation, the azimuth estimation performance of the proposed beamforming method and a wideband adaptive beamforming based on CSS processing are assessed.

A Study on Estimating Geomagnetic Azimuth using LSTM (LSTM을 이용한 지자기 방위각 추정 기술 연구)

  • Oh, Jongtaek;Kim, Sunghoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.137-141
    • /
    • 2022
  • The method of estimating the azimuth by measuring the geomagnetism has been used for a very long time. However, there are many cases where an error occurs in the estimated azimuth due to disturbances in the earth's magnetic field due to metal structures inside and outside the room. Although many studies have been conducted to correct this, there is a limit to reducing the error. In this paper, we propose a method of estimating the azimuth by applying the measured geomagnetic sensor data to the neural network of the LSTM structure. Data preprocessing is very important for learning a neural network. In this paper, data is collected using the built-in acceleration sensor, gyro sensor, and geomagnetic sensor in the smartphone, and the geomagnetic sensor data is uniformly sampled using EKF. As a result, an average azimuth estimation error of 0.9 degrees was obtained using four hidden layers.

The Design of Azimuthal Angle Sensor for Position Compensation of Chaotic Robot (카오스 로봇의 자세 보정을 위한 방위각 센서 설계)

  • Bae Young-Chul;Kim Yi-Gon;Kim Cheon-Suk;Cho Eui-Joo;Koo Young-Duk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.152-155
    • /
    • 2006
  • 카오스 로봇의 하드웨어 구현에서 로봇의 차제 또는 바퀴가 정확하기 자기 위치를 인식하고 지시한 방향과 거리만큼 이동하는 것이 가장 중요하다. 기존에 방위를 측정하기 위해서 주로 마그네틱 자이로센서를 사용하였으나 자이로센서는 주변의 자장의 영향을 크게 받아 정확한 방위를 측정하는 것이 곤란하다는 문제점이 있어 정확한 방향을 움직일 수 있는 각속도 센서로 대체하여 사용하는 방위각 센서 설계 방법을 제시하였다.

  • PDF

Mutiple Target Angle Tracking Algorithm Based on measurement Fusion (측정치 융합에 기반을 둔 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.13-21
    • /
    • 2006
  • Ryu et al. proposed a multiple target angle tracking algorithm using the angular measurement obtained from the signal subspace estimated by the output of sensor array. Ryu's algorithm has good features that it has no data association problem and simple structure. But its performance is seriously degraded in the low signal-to-noise ratio, and it uses the angular measurement obtained from the signal subspace of sampling time, even though the signal subspace is continuously updated by the output of sensor array. For improving the tracking performance of Ryu's algorithm, a measurement fusion method is derived based on ML(Maximum Likelihood) in this paper, and it admits us to use the angular measurements obtained form the adjacent signal subspaces as well as the signal subspace of sampling time. The new target angle tracking algorithm is proposed using the derived measurement fusion method. The proposed algorithm has a better tracking performance than that of Ryu's algorithm and it sustains the good features of Ryu's algorithm.