• Title/Summary/Keyword: 방위각 보정

Search Result 62, Processing Time 0.024 seconds

The comparative analysis of KOMPSAT-3 based surface normalized difference vegetation index: Application of GeoEye data (다목적실용위성 3호의 지표 정규식생지수 산출 및 비교 분석: GeoEye 자료 활용)

  • Yeom, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2014
  • In this study, we the estimated surface normalized difference vegetation index by using the KOrea Multi-Purpose SATellite-3 (KOMPSAT-3) multi-spectral images for comparative analysis. The estimated NDVI from KOMPSAT-3 is used as for comparison with the high resolution GeoEye products. The geometry conditions for atmospheric effects are selected from meta files of KOMPSAT-3 bundle data. The used geometry conditions are consist of solar zenith angle, solar azimuth angle, viewing zenith angle, viewing azimuth angle, and date. And, Atmospheric effects such as attenuation, scattering and absorption were physically simulated from water vapor, ozone and aerosol information. Generally, although ground measurements are important for accurate information, in this study, MODIS atmospheric products are used as atmospheric constituents. The surface reflectance from radiative transfer model is utilized for estimating vegetation index. The present study, to reduce atmospheric and geometry conditions between KOMPSAT-3 and GeoEye having difference observation characteristics, data acquisition time is carefully determined for reliable vegetation spectral characteristics.

Systematic Error Correction of Sea Surveillance Radar using AtoN Information (항로표지 정보를 이용한 해상감시레이더의 시스템 오차 보정)

  • Kim, Byung-Doo;Kim, Do-Hyeung;Lee, Byung-Gil
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.447-452
    • /
    • 2013
  • Vessel traffic system uses multiple sea surveillance radars as a primary sensor to obtain maritime traffic information like as ship's position, speed, course. The systematic errors such as the range bias and the azimuth bias of the two-dimensional radar system can significantly degrade the accuracy of the radar image and target tracking information. Therefore, the systematic errors of the radar system should be corrected precisely in order to provide the accurate target information in the vessel traffic system. In this paper, it is proposed that the method compensates the range bias and the azimuth bias using AtoN information installed at VTS coverage. The radar measurement residual error model is derived from the standard error model of two-dimensional radar measurements and the position information of AtoN, and then the linear Kalman filter is designed for estimation of the systematic errors of the radar system. The proposed method is validated via Monte-Carlo runs. Also, the convergence characteristics of the designed filter and the accuracy of the systematic error estimates according to the number of AtoN information are analyzed.

In-Flight Calibration Method for Direction Finding of Communication Signals based on Aviation Systems (항공 시스템 기반의 통신신호 방향 탐지를 위한 비행 보정 기법)

  • Chang, Jaewon;Joo, Jeungmin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.290-299
    • /
    • 2019
  • Direction-finding equipment with multiple antennas are used to estimate the direction of a signal emitted by a source; they can be used to rescue a victim or locate a specified source. During direction finding, reflection waves are present and signal distortion is observed depending on the external shape and material of a system that incorporates the direction-finding equipment and multiple antennas. Therefore, to accurately estimate the azimuth of the signal source and develop the direction-finding equipment, a calibration should be performed to reflect the influence of the antenna arrangement(layout) and system contour. In this paper, we describe an in-flight calibration method to develop direction-finding equipment to locate communication signals using an aviation system, and we analyze the direction-finding performance when applying phase calibration data obtained through the in-flight calibration.

Development of Real-Time Vision Aided Navigation Using EO/IR Image Information of Tactical Unmanned Aerial System in GPS Denied Environment (GPS 취약 환경에서 전술급 무인항공기의 주/야간 영상정보를 기반으로 한 실시간 비행체 위치 보정 시스템 개발)

  • Choi, SeungKie;Cho, ShinJe;Kang, SeungMo;Lee, KilTae;Lee, WonKeun;Jeong, GilSun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.401-410
    • /
    • 2020
  • In this study, a real-time Tactical UAS position compensation system based on image information developed to compensate for the weakness of location navigation information during GPS signal interference and jamming / spoofing attack is described. The Tactical UAS (KUS-FT) is capable of automatic flight by switching the mode from GPS/INS integrated navigation to DR/AHRS when GPS signal is lost. However, in the case of location navigation, errors accumulate over time due to dead reckoning (DR) using airspeed and azimuth which causes problems such as UAS positioning and data link antenna tracking. To minimize the accumulation of position error, based on the target data of specific region through image sensor, we developed a system that calculates the position using the UAS attitude, EO/IR (Electric Optic/Infra-Red) azimuth and elevation and numerical map data and corrects the calculated position in real-time. In addition, function and performance of the image information based real-time UAS position compensation system has been verified by ground test using GPS simulator and flight test in DR mode.

SDINS/GPS/ZUPT Integration Land Navigation System for Azimuth Improvement (방위각 개선을 위한 SDINS/GPS/ZUPT 결합 지상 항법 시스템)

  • Lee, Tae-Gyoo;Cho, Yun-Cheol;Jang, Suk-Won;Park, Jai-Yong;Sung, Chang-Ky
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.5-12
    • /
    • 2006
  • This study describes an SDINS/GPS/ZUPT integration algorithm for land navigation systems. The SDINS error can be decoupled in two parts. The first part is the the Schuler component which does not depend on object motion parameters, and the other is the Non-Schuler part which depends on the product of object acceleration and azimuth error. Azimuth error causes SDINS error in proportion to the traversed distance. The proposed system consists of a GPS/SDINS integration system and an SDINS/ZUPT integration system, which are both realized by an indirect feedforward Kalman filter. The main difference between the two is whether the estimate includes the Non-Schuler error or not, which is decided by the measurement type. Consequently, subtracting GPS/SDINS outputs from SDINS/ZUPT outputs provide the Non-Schuler error information which can be applied to improving azimuth accuracy. Simulation results using the raw data obtained from a van test attest that the proposed SDINS/GPS/ZUPT system is capable of providing azimuth improvement.

Design of Omni-directional Reflector for Synthetic Aperture Radar (합성개구레이더용 전방향 반사기의 설계)

  • Chang, Geba;Oh, Yi-Sok;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.501-506
    • /
    • 2007
  • Basic research is conducted to identify a target using corner reflectors which are commonly used in calibration of synthetic aperture radar (SAR) systems. At first, an omni-directional reflector is fabricated by combining four 15-cm rectangular trihedral corner reflectors. Then, its radar cross section (RCS) characteristics are measured at C-band (5.3 GHz) for vv-, hh-, hv-, and vh- polarizations at a range of horizontal angle, $-90^{\circ}{\le}{\phi}{\le}90^{\circ}$. The measured RCS angular variation of the omni-directional reflector is much smaller for vv-polarization than other polarizations, and the difference between the maximum and minimum RCSs for vv-polarization is about 8 dB. Peak RCS values are shown at $0^{\circ}$ (normal to plates) and $45^{\circ}$ (direction of bore sight). It is shown that the measurements agree quite well with numerical simulation and theoretical computation results.

Ellipsometric Expressions for a Near-normal-incidence Ellipsometer with the Polarizer-compensator-sample-compensator-analyzer Configuration (편광자-보정기-시료-보정기-검광자 배치를 가지는 준 수직입사 타원계의 타원식)

  • Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • A near-normal-incidence ellipsometer (NNIE) is suggested as an optical critical dimension (OCD) measurement system that is highly sensitive to the bottom defect of a sample with high-aspect-ratio structured patterns. Incident light passes through a polarizer and a phase retarder in sequence, and the reflected light from the sample also passes through them, but in reverse order. The operating principle of this NNIE, where a single polarizer and a single phase retarder are shared by the incident and reflected light, is studied, and a method to determine the ellipsometric constants from the measured intensities at proper combinations of the azimuthal angles of polarizer and retarder is presented.

The Parallax Correction to Improve Cloud Location Error of Geostationary Meteorological Satellite Data (정지궤도 기상위성자료의 구름위치오류 개선을 위한 시차보정)

  • Lee, Won-Seok;Kim, Young-Seup;Kim, Do-Hyeong;Chung, Chu-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • This research presents the correction method to correct the location error of cloud caused by parallax error, and how the method can reduce the position error. The procedure has two steps: first step is to retrieve the corrected satellite zenith angle from the original satellite zenith angle. Second step is to adjust the location of the cloud with azimuth angle and the corrected satellite zenith angle retrieved from the first step. The position error due to parallax error can be as large as 60km in case of 70 degree of satellite zenith angle and 15 km of cloud height. The validation results by MODIS(Moderate-Resolution Imaging Spectrometer) show that the correction method in this study properly adjusts the original cloud position error and can increase the utilization of geostationary satellite data.

Optimal Scheduling of Satellite Tracking Antenna of GNSS System (다중위성 추적 안테나의 위성추적 최적 스케쥴링)

  • Ahn, Chae-Ik;Shin, Ho-Hyun;Kim, You-Dan;Jung, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.666-673
    • /
    • 2008
  • To construct the accurate radio satellite navigation system, the efficient communication each satellite with the ground station is very important. Throughout the communication, the orbit of each satellite can be corrected, and those information will be used to analyze the satellite satus by the operator. Since there are limited resources of ground station, the schedule of antenna's azimuth and elevation angle should be optimized. On the other hand, the satellite in the medium earth orbit does not pass the same point of the earth surface due to the rotation of the earth. Therefore, the antenna pass schedule must be updated at the proper moment. In this study, Q learning approach which is a form of model-free reinforcement learning and genetic algorithm are considered to find the optimal antenna schedule. To verify the optimality of the solution, numerical simulations are conducted.

A Study on the Transducer Calibration for Acoustic Emission Measurement (AE 측정을 위한 탐촉자의 보정에 대한 고찰)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.53-58
    • /
    • 1996
  • In order to investigate the source mechanism of micro cracks through acoustic emission measurement induced by rock fracture, careful calibration of the entire linkage of the detecting system, from the transducers to transient recorder, is an essential requirement prior to testing. Transducers and digitiging system are generally the weakest links in the measurement system because they must translate mechanical motions into digital electric signals. In this study, PAC piezoelectric pressure transducers are calibrated with a standard NBS conical shaped displacement transducer and a DG piezoelectric displacement transducer. The NBS and PAC transducers are insensitive to changes in horizontal impingement angle but sensitive to changes in incident angle. The ray path along the logitudinal axis of the tranducer produced a maximum response while the ray path perpendicular to the transducer axis gave a minimum. And a difference in individual transducers factor for a peak-to-peak amplitude of PAC transducers was within 40%. An average PAC transducer coefficient was determined as 77mv/pm by an absolute calibration test using NBS transducer.

  • PDF