• Title/Summary/Keyword: 방열핀

Search Result 59, Processing Time 0.026 seconds

유전자 알고리즘을 이용한 고속 확관기의 확관속도 최적화

  • 정원지;김재량;한철문;김수태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.216-216
    • /
    • 2004
  • 본 논문은 우리가 일상 생활에서 접하는 에어컨의 핵심 부품인 열 교환기의 제작과정 중에서 확관 공정에서의 확관속도 최적화에 관한 것이다 여기서 열 교환기는 구멍 뚫린 박판형태의 방열핀과 이 구멍을 통과하는 구리재질의 관인 헤어핀의 2가지 주요 부품으로 구성되어있다 그리고 확관기(Fig. 1)에 있어서의 확관공정은 Fig. 2에서 보는 바와 같이 소성변형을 통한 관의 반지름 방향의 팽창으로 방열핀과 헤어핀을 결합시켜주는 높은 정밀도를 요구하는 작업이다.(중략)

  • PDF

다차원 구조의 그래핀-산화구리 나노선 복합 필러의 열전도도 특성

  • Ha, In-Ho;Lee, Han-Seong;An, Yu-Jin;Park, Ji-Seon;Seo, Mun-Seok;Jo, Jin-U;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.433.2-433.2
    • /
    • 2014
  • 그래핀(graphene)은 탄소나노튜브(CNTs)에 비해 가격 경쟁력이 있고 우수한 광투과성과 전기 및 열 전도성을 갖고 있어 반도체 소재, 방열 소재, 접점 소재 등에 적용 가능성이 높은 재료로 주목받고 있다. 특히 모바일 디바이스의 소형화, 고집적화 등의 이슈로 인해 그래핀 소재의 방열 소재 적용을 위해 다양한 연구가 진행되고 있다. 한편 산화 구리 나노선(CuO Nanowire)은 전기 및 열전도도가 우수하고 1차원 나노 구조는 부피대비 큰 표면적, 종횡비가 커서 뛰어난 열전도 구조로서 방열 소재로 응용되기 좋은 조건을 갖고 있다. 본 연구에서는 2차원 구조의 그래핀 나노플레이트(Graphene Nanoplatelet)와 1차원 구조의 CuO NW를 하이브리드화를 통해 열전도도 향상를 개선시키고자 하였다. 소재 합성은 GNP에 Cu 무전해 도금을 진행한 후 열산화 방식을 적용하여 CuO NW를 직접 성장시키는 방식으로 진행하였다. 합성된 GNP-CuONWs 다차원 나노구조체의 열전도도 측정은 에폭시에 분산시켜 레이져 플레쉬법을 이용하였다. 미세 구조 관찰 결과, CuO NW 성장 거동은 열처리 온도 및 시간 그리고 O2 가스의 순환 환경이 주요인자로 작용하는 것을 확인하였다. 열전도도 향상은 다차원 구조의 특성으로 인해 면접촉과 선접촉이 동시에 이루어졌기 때문인 것으로 분석되었으며, 이러한 CuO NWs morphology와 열전도도 향상과의 상관 관계에 대해 논의할 것이다.

  • PDF

Rate Augmentation of Exothermic Hydration in the CaO Packed Bed (CaO 충전층의 수화발열반응 촉진)

  • Chung, Soo-Yull;Kim, Jong-Shik
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.91-101
    • /
    • 1994
  • Heat release characteristics of a CaO packed bed reactor which is used for a chemical heat storage device has been studied. We employed Cu-plate fins to release the heat of reaction of the CaO packed bed inside the reactor fast and effectively. Two-dimensional analysis of unsteady state heat flow inside the bed was performed as a function of time and under various conditions of the Cu-plates. It is noted that the time required to release the heat of reaction with Cu fins is reduced more than twice fast compared to that without Cu fins. That was largely dependent upon the number of Cu-plate, as well.

  • PDF

Thermal Characteristics of a Heat Sink with Helical Fin Structure for an LED Lighting Fixture (헬리컬 핀 구조를 가진 LED 조명용 히트싱크의 열 특성)

  • Kim, Young-Hoon;Yim, Hae-Dong;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.6
    • /
    • pp.311-314
    • /
    • 2014
  • In this paper, we design a helical fin structure for the heat sink for a high-power LED lighting module, and analyze its thermal properties. By means of the helical fin structure, we can obtain about 14% larger surface area for the limited volume and it can decrease the LED chip temperature by about 12%. Because this helical fin heat sink has 15% less total volume than a conventional one, we can also expect to reduce the production cost due to these structural properties.

Evaluation of Heat Release Performance of Swaged- and Extruded-type Heat Sink Used in Industrial Inverter (산업용 인버터에 사용되는 압입식 및 압출식 히트싱크의 방열 성능 평가)

  • Kim, Jung Hyun;Ku, Min Ye;Lee, Gyo Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.523-528
    • /
    • 2013
  • In this experiment, we investigated the performance of two types of heat sink, swaged- and extruded-type, used in the inverter of industrial electricity generator. The swaged-type heat sink has 62 fins, and the extruded-type has 38 fins having the same dimension as that of the swaged-type. But the extruded-type heat sink maintains the same heat transfer area by the laterally waved surface which has 1 mm in radius. As a result, the swaged- and extruded-type heat sinks released 70.7% and 63.8% of the heat incoming to the heat sink, respectively. The other incoming heat were naturally convected and radiated to the ambient. In spite of 40% decrease in number of fins, the heat release performance of the extruded-type heat sink was lowered only 6.9% than that of the swaged-type. We believe that, this shows the increment of effective heat transfer area by the laterally waved surface of fins and the better heat transfer property of the extruded-type heat sink.

A Study on the Thermal Characteristics of Photovoltaic Modules with Fin (방열핀을 부착한 태양전지 모듈의 열적특성 연구)

  • Kim, Jong-Pil;Lim, Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.114-117
    • /
    • 2009
  • The performance of PV module applying the photovoltaic effects of the semiconductor is affected by temperature. Until now, most of PV module show that the power and efficiency falls at a rate of ${\sim}0.5%/^{\circ}C$ and ${\sim}0.05%/^{\circ}C$ respectively as increase of ambient temperature. In this study, the effect of fins attached to the backside of PV module was investigated through a thermal analysis program and simulation model. The result shows that the inner temperature of PV module with fin falls about $10^{\circ}C$ compare to that of ordinary PV module.

  • PDF

The Effects of Heat Diffusion Fin on the Thermal Behavior and Performance of Radiant Heatomg Panel (방열핀이 난방용 패널의 열적거동 및 성능에 미치는 영향)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2486-2493
    • /
    • 1994
  • Transient heat transfer characteristics in th radiant heating panel with heat diffusion fin were predicted by numerical analysis. Thermal behaviors of panel, such as temperature distributions in panel and convective and radiative heat fluxes in panel surface with advance of time, were obtained for several important parameters. The performance and thermal comfort of heating panel were studied and compared for various design conditions, such as pipe pitch, area ratio and thermal conductivity of optimal design of the new heating panels with heat diffusion fin. It was concluded that the efficient area ratio of heat diffusion fin is about 0.5, and the greater the thermal conductivity of fin is, the better the performance of panel is.

Numerical Analysis on Cooling Characteristics of the Heat Sink for Amplifier (앰프용 히트싱크의 방열특성에 관한 해석적 연구)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.947-951
    • /
    • 2015
  • The objective of this study is to numerically investigate the cooling characteristics of the heat sink as a cooling device for the amplifier. In order to analyze the heat transfer performances of the heat sink, the steady-state thermal model of the ANSYS software was used and analyzed with the fin thickness, fin pitch and fin number of the heat sink. As a result, the temperature at the junction of heat sink was decreased with the increase of fin thickness and fin number. In addition, the thermal resistances of the heat sinks were enhanced from $0.764^{\circ}C/W$ to $0.739^{\circ}C/W$ and $1.254^{\circ}C/W$ to $0.610^{\circ}C/W$, respectively, with the increase of the fin thickness from 1 mm to 3 mm and fin number from 9 to 20, respectively.

A Study of Optimal Thermal Design for a 10W LED lamp (10W LED 조명등 방열 설계 최적화에 관한 연구)

  • Hwang, Soon-Ho;Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2317-2322
    • /
    • 2010
  • Market for LED lights as a newly-growing industry has been growing, and secureness of high efficiency and long life through optimal thermal design are crucial for further popularization. In this study, considerable improvement in thermal performance for a 10W LED light has been done compared to a previous model. For this, numerical model has been established through experiments and used to optimize design factors in heat release such as fin shape, PCB kind or LED number etc. Furthermore, prototype of a LED light has been made and the improved thermal performance was verified with heat release experiments.

Development of heat exchanger by the utilization of underground water. I - Design for plat fin tube - (지하수 이용을 위한 열교환기 개발. I - 냉각핀의 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.119-127
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger, parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. of The registration design : 0247164, by Korean Intellectual property Office). The fin of exchanger was design of the granulated surface for minimizing fouling factor and dew forms, and also placed parallel to the tube in order to minimized the resistance of flows. 1. Aloo-heat was designed to have 0.03m for inside diameter, 0.036m for outside diameter of tube, 0.0012m for thickness of fin and 0.032m for length of plat fin. 2. t was also designed to have 1.5248m2/m for outside area of heat transfer, 0.0942m2/m for inside area contacting hot liquid, and the ratio (Ra) was 16.1869. 3. Efficiency of the fin was 93 percentage when fin length was 0.032m, and the fin thickness satisfied equation $\frac{h{\rho}}{k}$< 0.2 when it was 0.0012m. 4. According to the performance test of Aloo-heat, as the temperature and rate increased, the heating value also increased, heating value was 504kJ/h·m and 6,048kJ/h·m when it was 60℃, 10 𝑙/min and 80℃, 40 𝑙/min respectively. 5. The test of heating value was confident, because correlation value(R2) was 0.9898 for the temperature and 0.9721 for flow rate of hot liquid, respectively.