• Title/Summary/Keyword: 방사화

Search Result 1,497, Processing Time 0.049 seconds

A Study on the Application of Ion Crystallization Technology to the APR 1400 Liquid Waste Management System (핵종 이온 광물화 처리기술의 APR 1400 발전소 액체방사성폐기물관리계통 적용 위치에 대한 고찰)

  • Go, Kyung-Min;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.419-427
    • /
    • 2019
  • The application of ion crystallization technology was considered as a way to increase the operating efficiency and improve the operating performance of a liquid waste management system (LWMS) in the Advanced Power Reactor 1400 (APR 1400). Although ion crystallization technology has not been practically applied to Nuclear Power Plants (NPPs) until now, a previous experimental study demonstrated that it is possible to selectively remove at least 95% of various nuclide ions present in the liquid radioactive waste of NPPs. We reviewed the possibility of applying ion crystallization technology to the existing LWMS by applying the nuclide removal rate of ion crystallization technology and prepared a way to improve the existing LWMS in the APR 1400. Furthermore, we determined the optimized application location of ion crystallization technology in the existing LWMS by considering decontamination characteristics of the ion crystallization technology and the existing LWMS design features and operating experiences. The application of ion crystallization technology to the liquid waste collection tank, where liquid radioactive materials are collected, will have the least impact on the existing design while providing the greatest improvement. It is expected that the application of ion crystallization technology to the current APR 1400 or new NPPs would increase the operating efficiency of the LWMS and result in an improvement of system performance.

A Study on Activation Characteristics Generated by 9 MeV Electron Linear Accelerator for Container Security Inspection (컨테이너 보안 검색용 9 MeV 전자 선형가속기에서 발생한 방사화 특성평가에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-Hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2020
  • The purpose of this study is to evaluate the activation characteristics that occur in a linear accelerator for container security inspection. In the computer simulation design, first, the targets consisted of a tungsten (Z=74) single material target and a tungsten (Z=74) and copper (Z=29) composite target. Second, the fan beam collimator was composed of a single material of lead (Z=82) and a composite material of tungsten (Z-74) and lead (Z=82) depending on the material. Final, the concrete in the room where the linear accelerator was located contained magnetite type and impurities. In the research method, first, the optical neutron flux was calculated using the MCNP6 code as a F4 Tally for the linear accelerator and structure. Second, the photoneutron flux calculated from the MCNP6 code was applied to FISPACT-II to evaluate the activation product. Final, the decommissioning evaluation was conducted through the specific activity of the activation product. As a result, first, it was the most common in photoneutron targets, followed by a collimator and a concrete 10 cm deep. Second, activation products were produced as by-products of W-181 in tungsten targets and collimator, and Co-60, Ni-63, Cs-134, Eu-152, Eu-154 nuclides in impurity-containing concrete. Final, it was found that the tungsten target satisfies the permissible concentration for self-disposal after 90 days upon decommissioning. These results could be confirmed that the photoneutron yield and degree of activation at 9 MeV energy were insignificant. However, it is thought that W-181 generated from the tungsten target and collimator of the linear accelerator may affect the exposure when disassembled for repair. Therefore, this study presents basic data on the management of activated parts of a linear accelerator for container security inspection. In addition, When decommissioning the linear accelerator for container security inspection, it is expected that it can be used to prove the standard that permissible concentration of self-disposal.

고속방사된 복합섬유의 인장거동 해석

  • 신수열;박종범;신동태;신현세;조현혹
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.106-110
    • /
    • 1998
  • 최근 용융방사섬유의 제조에 이용되고 있는 고속방사법은 높은 신장속도하에서 일어나는 배향결정화에 의한 섬유구조형성을 목적으로 하는 방사법으로, 방사선에서의 동력학은 폴리머의 열특성, 냉각거동 및 방사선상에서 작용하는 응력 등의 많은 인자에 의해 영향을 받는다. 복합섬유란 특수한 복합방사장치를 이용하여 두 개의 폴리머가 동시에 압출되어 하나의 필라멘트를 형성하도록 방사한 섬유로써 권축섬유, 열융착형섬유, 이형단면섬유, 전도성섬유, 초극세섬유 등 특수한 섬유의 제조에 이용되기 때문에 그 상업적 관심도가 크다[1].(중략)

  • PDF