• Title/Summary/Keyword: 방사성폐기물처분

Search Result 988, Processing Time 0.019 seconds

Determination of Radionuclide Concentration Limit for Low and Intermediate-Level Radioactive Waste Disposal Facility II: Application of Optimization Methodology for Underground Silo Type Disposal Facility (중저준위방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 II: 최적화 방법론 개발 및 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.265-279
    • /
    • 2017
  • The Gyeongju underground silo type disposal facility, approved for use in December 2014, is in operation for the disposal of low and very low-level radioactive wastes, excluding intermediate-level waste. That is why the existing low-level radioactive waste level has been subdivided and the concentration limit value for intermediate-level waste has been changed in accordance with Nuclear Safety Commission Notice 2014-003. For the safe disposal of intermediate-level wastes, new optimization methodology for calculating the concentration limit of intermediate radioactive level wastes at an underground silo type disposal facility was developed. According to the developed optimization methodology, concentration limits of intermediate-level wastes were derived and the inventory of radioactive nuclides was evaluated. The operation and post closure scenarios were evaluated for the derived radioactive nuclide inventory and the results of all scenarios were confirmed to meet the regulatory limit. However, in case of $^{14}C$, it was confirmed that additional radioactivity limitation through a well scenario was needed in addition to the limit of disposal concentration. It was confirmed that the derived intermediate concentration limit of radioactive waste can be used as the intermediate-level waste concentration limit for the underground disposal facility. For the safe disposal of intermediate-level wastes, KORAD plans to acquire additional data from the radioactive waste generator and manage the cumulative radioactivity of $^{14}C$.

밀봉선원폐기물 처분을 위한 분류방안 도출

  • 이지훈;이태범;박주완;김창락
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.235-235
    • /
    • 2004
  • 밀봉선원 폐기물은 크기가 작지만 특별한 관리 및 처분을 요하는 방사성폐기물이다. 특히 수거된 폐라듐선원의 경우 장기간의 관리가 필요하며, 음식물 보존이나 살균에 사용된 대형 밀봉선원 폐기물의 경우도 처분보다는 재활용도 고려하여야 한다. 이러한 밀봉선원의 특징은 작은 크기와 고건전성물질로 되어 있고 높은 비방사능을 갖는다는 것이며 따라서 처분시 보통의 방사성폐기물과는 달리 비균질폐기물의 특성을 고려한 안전성 평가가 필요하다.(중략)

  • PDF

The Study for Reducing the Borrowing Cost for LILW Disposal (중·저준위방사성폐기물처분사업에서 금융비용 감소를 위한 연구)

  • Kim, Beomin;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • The repository for the disposal of LILW which is generated from nuclear power plants and industries is expected to be completed in 2014. For the disposal of LILW, it is important to secure a disposal facility itself, but it is also very important to establish a reasonable charging system which all shareholders are satisfied with. Korea's disposal fee for LILW is higher than other countries' fee, which is a burden to waste generators as well as the waste management organization. The partial reason for the high disposal fee is put on the high social and construction cost when compared with other countries. However the major reason is put on the excessive borrowing cost that is used for the construction of the LILW disposal facility. In this study, we proposed the way to reduce the excessive borrowing cost for sustainable project managements of LILW disposal by analyzing a cost structure.

방사성 폐기물 처분장의 확률론적 안전성 분석 방법론에 관한 연구

  • 정재훈;김강열;강창순
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.813-818
    • /
    • 1995
  • 방사성 폐기물 처분장의 확률론적 안전성 분석은 방사성 폐기물 처분장의 운영에 앞서 수행되어야 할 과제이다. 따라서, 본 연구에서는 폐기물 처분장의 확률론적 안전성 분석을 체계적으로 수행하기 위한 방법론을 개발하여 제시하였다.

  • PDF

Determination of Radionuclide Concentration Limit for Low and Intermediate-level Radioactive Waste Disposal Facility I : Application of IAEA Methodology for Underground Silo Type Disposal Facility (중저준위 방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 I : IAEA 방법론의 동굴처분시설 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • For the safe disposal of intermediate level radioactive waste according to the Nuclear Safety and Security Commission's notice and KORAD's management plan for low and intermediate level radioactive waste, the disposal concentration limit was derived based on the IAEA methodology. The evaluation of the derived disposal concentration limit revealed that it is not suitable as a practical limit for intermediate level radioactive waste. This is because the disposal concentration limit according to the IAEA methodology is derived using a single value of radioactive waste density and the disposal facility's volume. The IAEA methodology is suitable for setting the concentration limit for vault type disposal, which consists of a single type of waste, whereas an underground silo type disposal facility is composed of several types of radioactive waste, and thus the IAEA methodology has limitations in determining the disposal concentration limit. It is necessary to develop and apply an improved method to derive the disposal concentration limit for intermediate level radioactive waste by considering the radioactivity of various types of radioactive waste, the corresponding scenario evaluation results, and the regulatory limit.

Radwaste characteristics and Disposal Facility Waste Acceptance Criteria (국내 방사성폐기물 특성과 방사성폐기물 처분시설 폐기물인수기준)

  • Sung, Suk-Hyun;Jeong, Yi-Yeong;Kim, Ki-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.347-356
    • /
    • 2008
  • The purpose of Radioactive Waste Acceptance Criteria(WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  • PDF

Ventilation System Strategy for a Prospective Korean Radioactive Waste Repository (한국형 방사성 폐기물 처분장을 위한 환기시스뎀 전략)

  • Kim Jin;Kwon Sang-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.135-148
    • /
    • 2005
  • In the stage of conceptual design for the construction and operation of the geologic repository for radioactive wastes, it is important to consider a repository ventilation system which serves the repository working environment, hygiene & safety of the public at large, and will allow safe maintenance like moisture content elimination in repository for the duration of the repositories life, construction/operation/closure, also allowing safe waste transportation and emplacement. This paper describes the possible ventilation system design criteria and requirements for the prospective Korean radioactive waste repositories with emphasis on the underground rock cavity disposal method in the both cases of low & medium-level and high-level wastes. It was found that the most important concept is separate ventilation systems for the construction (development) and waste emplacement (storage) activities. In addition, ventilation network system modeling, natural ventilation, ventilation monitoring systems & real time ventilation simulation, and fire simulation & emergency system in the repository are briefly discussed.

  • PDF

방사성폐기물의 유리고화 기술 현황

  • 송명재
    • Nuclear industry
    • /
    • v.17 no.2 s.168
    • /
    • pp.62-69
    • /
    • 1997
  • 원자력발전소에서 발생되는 방사성 폐기물을 안정된 폐기물로 만들어 환경 문제를 극소화시키고, 또한 폐기물의 부피를 혁신적으로 감소시켜 처분비를 줄일 수 있는 방법 중 현재 가장 적합한 방법으로 시행되고 있는 기술은 폐기물의 유리 고화 기술일 것이다. 고준위 폐기물의 유리 고화 기술은 이미 상용화되고 있고, 중$\cdot$건설 단계에 와있다. 우리 나라의 경우 현재 방사성 폐기물 처분장 확보에 큰 어려움을 겪고 있는데, 이 기술이 성공하면 중$\cdot$저준위 방사성 폐기물의 처분 문제가 크게 줄어들 것이다. 방사성 폐기물의 유리 고화 기술의 개발 이용 현황과 앞으로의 과제 등을 알아본다.

  • PDF

Plan to Develop the Radioactive Waste Certification Program (방사성폐기물인증프로그램 개발 방안)

  • Chung Hee-Jun;Lee Jae-Min;Whang Joo-Ho;Kim Heon;Jeong Yi-Yeong
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.205-210
    • /
    • 2005
  • The proposed regulation for low and intermediate level radioactive waste disposal facility, scheduled to be revised, recommends that the waste generator should verify the radioactive waste conforms to the disposal requirements before disposing of it. According to the regulation, the radionuclide concentration of the radioactive waste, and its physical and chemical characteristics and safety must be confirmed prior to the disposal of low and intermediate level radioactive wastes, and the waste generator is required to deliver this information to the disposal facility operator. In addition, the disposal facility operator must assess the safety of the disposal site to establish the SWAC (Site Specific Waste Acceptance Criteria) in consideration of the characteristics of the site, whereas the waste generator must comply with the criteria in managing, disposing of and delivering low and intermediate level radioactive wastes. To abide by the afore-mentioned regulation and criteria, the waste generator must verify that the radioactive wastes to be disposed of are suitable for disposal before they are transported to the disposal facility, and to this end a radioactive waste certification program must be developed. This study conducted an in-depth analysis of the radioactive waste certification programs enforced in countries advanced in atomic energy to develop a draft of a certification program applicable to local power plants, and the program is currently applied as pilot to Uljin Power Plants No. 1 & 2 to prove its applicability. This study is going to analyze the results of the pilot application with a view to developing a radioactive waste certification program suitable to local conditions.

  • PDF

Borehole Disposal Concept: A Proposed Option for Disposal of Spent Sealed Radioactive Sources in Tanzania (보어홀 처분 개념: 탄자니아의 폐밀봉선원 처분을 위한 제안)

  • Salehe, Mikidadi;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • Borehole Disposal Concept (BDC) was initiated by the South African Nuclear Energy Corporation (NECSA) with the view to improve the radioactive waste management practices in Africa. At a time when geological disposal of radioactive waste is being considered, the need to protect ground water from possible radioactive contamination and the investigation of radionuclides migration through soil and rocks of zone of aeration into ground water has becomes very imperative. This is why the Borehole Disposal Concept (BDC) is being suggested to address the problem. The concept involves the conditioning and emplacement of disused sealed radioactive sources in an engineered facility of a relatively narrow diameter borehole (260 mm). Tanzania is operating a Radioactive Waste Management Facility where a number of spent sealed radioactive sources with long and short half lives are stored. The activity of spent sealed radioactive sources range from (1E-6 to 8.8E+3 Ci). However, the long term disposal solution is still a problem. This study therefore proposing the country to adopt the BDC, since the repository requires limited land area and has a low probability of human intrusion due to the small footprint of the borehole.