• Title/Summary/Keyword: 방사선 측정 시스템

Search Result 355, Processing Time 0.029 seconds

Geometric Calibration of Cone-beam CT System for Image Guided Proton Therapy (영상유도 양성자치료를 위한 콘빔 CT 재구성 알고리즘: 기하학적 보정방법에 관한 연구)

  • Kim, Jin-Sung;Cho, Min-Kook;Cho, Young-Bin;Youn, Han-Bean;Kim, Ho-Kyung;Yoon, Myoung-Geun;Shin, Dong-Ho;Lee, Se-Byeung;Lee, Re-Na;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2008
  • According to improved radiation therapy technology such as IMRT and proton therapy, the accuracy of patient alignment system is more emphasized and IGRT is dominated research field in radiation oncology. We proposed to study the feasibility of cone-beam CT system using simple x-ray imaging systems for image guided proton therapy at National Cancer Center. 180 projection views ($2,304{\times}3,200$, 14 bit with 127 ${\mu}m$ pixel pitch) for the geometrical calibration phantom and humanoid phantoms (skull, abdomen) were acquired with $2^{\circ}$ step angle using x-ray imaging system of proton therapy gantry room ($360^{\circ}$ for 1 rotation). The geometrical calibration was performed for misalignments between the x-ray source and the flat-panel detector, such as distances and slanted angle using available algorithm. With the geometrically calibrated projection view, Feldkamp cone-beam algorithm using Ram-Lak filter was implemented for CBCT reconstruction images for skull and abdomen phantom. The distance from x-ray source to the gantry isocenter, the distance from the flat panel to the isocenter were calculated as 1,517.5 mm, 591.12 mm and the rotated angle of flat panel detector around x-ray beam axis was considered as $0.25^{\circ}$. It was observed that the blurring artifacts, originated from the rotation of the detector, in the reconstructed toomographs were significantly reduced after the geometrical calibration. The demonstrated CBCT images for the skull and abdomen phantoms are very promising. We performed the geometrical calibration of the large gantry rotation system with simple x-ray imaging devices for CBCT reconstruction. The CBCT system for proton therapy will be used as a main patient alignment system for image guided proton therapy.

  • PDF

Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter (유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구)

  • Jeong, Seonghoon;Yoon, Myonggeun;Kim, Dong Wook;Chung, Weon Kuu;Chung, Mijoo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.241-249
    • /
    • 2015
  • As radiation therapy is one of three major cancer treatment methods, many cancer patients get radiation therapy. To exposure as much radiation to cancer while normal tissues near tumor get little radiation, medical physicists make a radiotherapy plan treatment and perform quality assurance before patient treatment. Despite these efforts, unintended medical accidents can occur by some errors. In order to solve the problem, patient internal dose reconstruction methods by measuring transit dose are suggested. As feasibility study for development of patient dose verification system, inverse square law, percentage depth dose and scatter factor are used to calculate dose in the water-equivalent homogeneous phantom. As a calibration results of ionization chamber and glass dosimeter to transit radiation, signals of glass dosimeter are 0.824 times at 6 MV and 0.736 times at 10 MV compared to dose measured by ionization chamber. Average scatter factor is 1.4 and Mayneord F factor was used to apply percentage depth dose data. When we verified the algorithm using the water-equivalent homogeneous phantom, maximum error was 1.65%.

Evaluation of Indoor Air Quality in a Department of Radiation Oncology Located Underground (지하에 위치한 방사선종양학과에서의 실내공기 질 평가)

  • Kim, Won-Taek;Shin, Yong-Chul;Kang, Dong-Mug;Ki, Yong-Kan;Kim, Dong-Won;Kwon, Byung-Hyun
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.243-252
    • /
    • 2005
  • Purpose: Indoor air quality (IAQ) in the radiation treatment center which is generally located underground is important to the health of hospital workers and patients treated over a long period of time. this study was conducted to measure and analyze the factors related to IAQ and subjective symptoms of sick building syndrome, and to establish the causes influencing IAQ and find a solution to the problems. Methods and Materials : Self administrated questionnaire was conducted to check the workers' symptoms and understanding of the work environment. Based on a preliminary investigation, the factors related to IAQ such as temperature, humidity, fine particulate. carbon dioxide, carbon monoxide, formaldehyde, total volatile organic compounds (TVOC), and radon gas were selected and measured for a certain period of time in specific sites where hospital workers stay long in a day. And we also evaluated the surrounding environment and the efficiency of the ventilating system simultaneously, and measured the same factors at the first floor (outdoor) to compare with outdoor all quality, All collected data were assessed by the recommended standard for IAQ of the domestic and international environmental organizations. Results: Hospital workers were discontented with foul odors, humidity and particulate. They complained symptoms related to musculo-skeletal system, neurologic system, and mucosal-irritatation. Most of the factors were not greater than the recommended standard, but the level of TVOC was third or fourth times as much as the measuring level of some offices in the United States. The frequency and the amount of the ventilating system were adequate, however, the problem arising in the position of outdoor-air inlets and indoor-air outlets involved a risk of the indraft of contaminated air. A careful attention was a requirement in handling and keeping chemical substances including a developing solution which has a risk of TVOC emissions, and repositioning the ventilating system was needed to solve the contaminated-air circulation immediately Conclusion We verified that some IAQ-related factors and inadequate ventilating system could cause subjective symptoms in hospital workers. The evaluation of IAQ was surely needed to improve the underground working environments for hospital workers and patients. On the basis of these data, from now on, we should actively engage in designs of the department of radiation oncology or improvement in environments of the existing facilities.

두경부암의 6MV 광자선 치료 시 표면선량 증가를 위한 Spoiler의 유용성 평가

  • 이강혁;김원택;이화중;김대영
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.41-47
    • /
    • 2002
  • 1.목적 두경부암(head and neck Ca)과 쇄골상부(Supraclavicular)에 6MV 광자선으로 치료 시 치료부위(Target volume)가 피부에서 대략 $1^{\sim}2mm$정도 깊이에 위치할 경우, 6MV 광자선의 선량분포는 표면선량이 낮아서 치료에 적합하지 않기 때문에 Bolus와 같이 사용하지만 Skin Sparing(피부보호)효과의 손실로 피부의 손상이 발생할 수 있다. 이러한 이유로 피부의 보호와 치료 시 표면선량의 증가를 위해 Spoiler(산란판)를 제작하여 측정 후 그 특성을 이해하고 선량의 분포를 통하여 Bolus와 비교한 후에 Spoiler의 유용성에 대해 평가하고자 하였다. 2.방법 Siemens사 선형가속기(PRIMUS)의 6MV 광자선을 사용하여 Spoiler의 사용여부 및 Spoiler의 사용 시에는 조사면의 크기를 $5{\times}5,\;7{\times}7,\;10{\times}10,\;15{\times}15,\;20{\times}20cm^2$로 하고 Spoiler와 표면과의 거리는 6, 10, 15cm로 바꾸어 가면서 물팬톰(PTW. 독일)을 이용해 깊이와 측방에 따른 선량분포를 Markus 전리함(PTW. 독일)으로 측정하였으며 전리함의 방수를 위해 씌어진 방수 캡 때문에 표면선량을 별도의 고형 팬톰으로 측정하였다. 표면의 측정선량은 전리함의 측면 벽 등에 의한 선량 측정치의 증가 현상으로 과 반응을 보였으며 이를 교정하였다. 그리고 측정된 데이터를 치료계획 시스템(Pinnacle 6.0m)으로 비교, 분석하였다. 3.결과 Spoiler의 사용 시 3cm깊이 측정선량 백분율과 Spoiler를 사용하지 않은 해당 치료 조사면의 3cm깊이 선량의 백분율에 일치하도록 하여 가상의 치료 깊이인 2mm에서 측정값을 비교하여 본 결과 조사면 $5{\times}5,\;10{\times}10,\;20{\times}20cm^2$에서 OPEN시 62, 64, $70\%$, Bolus는 97, 97, $99\%$로 Spoiler의 사용 시 표면과의 거리가 6cm에서 82, 98, $103\%$, 10cm에는 72, 89, $101\%$, 15m에 65, 79, $96\%$로 나타났으며 표면에서의 측정값을 비교하여 본 결과 OPEN시 11, 17, $27\%$, Bolus는 84, 84, $86\%$, Spoiler의 사용 시 6cm에서 40, 71, $93\%$, 10cm에는 25, 50, $81\%$, 15cm에 18, 36, $67\%$를 나타내었다. 또한 3m깊이에서의 측방 선량분포에서 Spoiler의 거리변화(6, 10cm)는 심부선량의 변화에 영향을 주지 않는 것으로 확인할 수 있었다. 그리고 위의 실험측정치를 치료계획 시스템에 입력하여 선량분포를 확인한 결과 Spoiler를 사용하는 경우 OPEN에 비해 선량분포 영역을 표면으로 끌어 올릴 수 있으며 Bolus 보다 피부 보호효과는 어느 정도 유지가 되는 것을 보여주었다. 4.결론 이와 같이 Spoiler는 Bolus와 비교하여 6MV 광자선의 build up 영역을 표면으로 증가시키는 동시에 Skin Sparing(피부보호)효과를 유지할 수 있으며 두경부암의 치료에서 Spoiler의 사용이 가능한 조건으로는 조사면이 $5{\times}5cm^2$에서 Spoiler와 표면과의 거리가 6cm일 때, $7{\times}7cm^2$에서 6cm, 10cm였고 $10{\times}10cm^2$는 10cm, 15cm로, $15{\times}15cm^2$는 15cm의 간격으로 평가되었다. 또한 $20{\times}20cm^2$의 조사면, Spoiler가 6cm 간격 인 경우 Bolus를 사용한 것 보다 더욱 높은 표면선량을 나타내었다. 그러나 Spoiler와 표면간의 거리를 다르게 함으로써 깊이에 따라 선량분포를 다양하게 나타낼 수 있기 때문에 표면선량의 증가와 피부의 보호를 위해 환자의 피부 두께, 실제 치료 부위의 깊이 등을 고려한다면 Spoiler를 사용하는 것이 bolus를 사용하는 것보다 더 유용하게 적용할 수 있을 것으로 사료된다.

  • PDF

Evaluating efficiency of application the skin flash for left breast IMRT. (왼쪽 유방암 세기변조방사선 치료시 Skin Flash 적용에 대한 유용성 평가)

  • Lim, Kyoung Dal;Seo, Seok Jin;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.49-63
    • /
    • 2018
  • Purpose : The purpose of this study is investigating the changes of treatment plan and comparing skin dose with or without the skin flash. To investigate optimal applications of the skin flash, the changes of skin dose of each plans by various thicknesses of skin flash were measured and analyzed also. Methods and Material : Anthropomorphic phantom was scanned by CT for this study. The 2 fields hybrid IMRT and the 6 fields static IMRT were generated from the Eclipse (ver. 13.7.16, Varian, USA) RTP system. Additional plans were generated from each IMRT plans by changing skin flash thickness to 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm and 2.5 cm. MU and maximum doses were measured also. The treatment equipment was 6MV of VitalBeam (Varian Medical System, USA). Measuring device was a metal oxide semiconductor field-effect transistor(MOSFET). Measuring points of skin doses are upper (1), middle (2) and lower (3) positions from center of the left breast of the phantom. Other points of skin doses, artificially moved to medial and lateral sides by 0.5 cm, were also measured. Results : The reference value of 2F-hIMRT was 206.7 cGy at 1, 186.7 cGy at 2, and 222 cGy at 3, and reference values of 6F-sIMRT were measured at 192 cGy at 1, 213 cGy at 2, and 215 cGy at 3. In comparison with these reference values, the first measurement point in 2F-hIMRT was 261.3 cGy with a skin flash 2.0 cm and 2.5 cm, and the highest dose difference was 26.1 %diff. and 5.6 %diff, respectively. The third measurement point was 245.3 cGy and 10.5 %diff at the skin flash 2.5 cm. In the 6F-sIMRT, the highest dose difference was observed at 216.3 cGy and 12.7 %diff. when applying the skin flash 2.0 cm for the first measurement point and the dose difference was the largest at the application point of 2.0 cm, not the skin flash 2.5 cm for each measurement point. In cases of medial 0.5 cm shift points of 2F-hIMRT and 6F-sIMRT without skin flash, the measured value was -75.2 %diff. and -70.1 %diff. at 2F, At -14.8, -12.5, and -21.0 %diff. at the 1st, 2nd and 3rd measurement points, respectively. Generally, both treatment plans showed an increase in total MU, maximum dose and %diff as skin flash thickness increased, except for some results. The difference of skin dose using 0.5 cm thickness of skin flash was lowest lesser than 20 % in every conditions. Conclusion : Minimizing the thickness of skin flash by 0.5 cm is considered most ideal because it makes it possible to keep down MUs and lowering maximum doses. In addition, It was found that MUs, maximum doses and differences of skin doses did not increase infinitely as skin flash thickness increase by. If the error margin caused by PTV or other factors is lesser than 1.0 cm, It is considered that there will be many advantages in with the skin flash technique comparing without it.

  • PDF

Feasibility study of the usefulness of SRS thermoplastic mask for head & neck cancer in tomotherapy (두경부 종양의 토모치료 시 정위적방사선수술 마스크의 유용성 평가에 대한 연구)

  • Jeon, Seong Jin;Kim, Chul Jong;Kwon, Dong Yeol;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.355-362
    • /
    • 2014
  • Purpose : When head&neck cancer radiation therapy, thermoplastic mask is applied for patients with fixed. The purpose of this study is to evaluate usefulness of thermoplastic mask for SRS in tomotherapy by conparison with the conventional mask. Materials and Methods : Typical mask(conventional mask, C-mask) and mask for SRS are used to fix body phantom(rando phantom) on the same iso centerline, then simulation is performed. Tomotherapy plan for orbit and salivary glands is made by treatment planning system(TPS). A thick portion and a thin portion located near the treatment target relative to the mask S-mask are defined as region of interest for surface dose dosimetry. Surface dose variation depending on the type of mask was analyzed by measuring the TPS and EBT film. Results : Surface dose variation due to the type of mask from the TPS is showed in orbit and salivary glands 0.65~2.53 Gy, 0.85~1.84 Gy, respectively. In case of EBT film, -0.2~3.46 Gy, 1.04~3.02 Gy. When applied to the S-mask, in TPS and Gafchromic EBT3 film, substrantially 4.26%, 5.82% showed maximum changing trend, respectively. Conclusion : To apply S-mask for tomotherapy, surface dose is changed, but the amount is insignificant and be useful when treatment target is close critical organs because decrease inter and intra fractional variation.

Property of Dose Distribution in Accordance with Dose Rate Variation in Intensity Modulated Radiation Therapy (세기조절방사선치료에서 선량율 변화에 따른 선량분포 특성)

  • Kang, Min-Kyu;Kim, Sung-Joon;Shin, Hyun-Soo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.218-222
    • /
    • 2010
  • As radiation is irradiated from various directions in intensity modulated radiation therapy (IMRT), longer treatment time than conventional treatment method is taken. In case of the patients who have problem to keep same posture for long time because of pain and injury, reducing treatment time through increased dose rate is a way for effective treatment. This study measured and found out the variation of dose and dose distribution in accordance with dose rate variation. IMRT treatment plan was set up to investigate from 5 directions - $0^{\circ}$, $72^{\circ}$, $144^{\circ}$, $216^{\circ}$, $288^{\circ}$ - using ECLIPSE system (Varian, SomaVision 6.5, USA). To confirm dose and dose rate in accordance with dose rate variation, dose rate was set up as 100, 300, 500 MU/min, and dose and dose distribution were measured using ionization chamber (PTW, TN31014) and film dosimeter (EDR2, Kodak). At this time, film dosimeter was inserted into acrylic phantom, then installed to run parallel with beam's irradiating direction, 21EX-S (Varian, USA) was utilized as linear accelerator for irradiation. The measured film dosimeter was analyzed using VXR-16 (Vidar System Corporation) to confirm dose distribution.

Development of Personal Dosimeter (개인 피폭선량 측정 시스템 개발)

  • Kwon, S.G.;Yi, U.K.;Lim, Hun;Sohn, C.H.;Kim, J.S.;Lee, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.724-726
    • /
    • 2000
  • 일반적으로 개인방사선감시에 열형광선량계와 필름배지가 공식 개인선량계로 이용되어 왔고 현재까지도 가장 보편적으로 사용되고 있다. 하지만 최근에는 Si 다이오드와 G-M관을 이용한 능동형 개인피폭선량계가 개발 보급되고 있다. 개인피폭선량계는 누적선량을 실시간으로 알 수 있다는 장점을 가지고 있을 뿐만 아니라 선량률에 관한 정보도 제공하므로 높은 비용부담에도 불구하고 피폭관리의 용이함으로 인해 주목을 받고 있다. 따라서 본 연구는 수입에 의존해 온 개인피폭선량계를 대체하기 위해 반도체형 방사선 검출기를 설계하여 다양한 서비스를 부가할 수 있는 개인피폭선량계를 자체개발고, 선량계의 운영 및 판독을 위한 장치를 개발하였다.

  • PDF

Comparative Analysis of Treatment Planning System and Dose Distribution of Gamma knife PerfexionTM using EBT-3 Film (EBT-3 필름을 사용한 감마나이프 퍼펙션TM의 치료 계획 시스템 및 선량 분포 비교 분석)

  • Jin, Seongjin;Kim, eongjin;Seo, Weonseop;Hur, Beongik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.509-515
    • /
    • 2017
  • The purpose of this study is to measure the 3 dimensional dose distribution of Gamma knife $Perfection^{TM}$, make a comparative analysis of the result and establish the measurement method for the procedures using EBT3 film. The dose distributions of the Gamma knife $Perfection^{TM}$ installed in two hospitals were evaluated in accuracy and precision. For accuracy, the difference between the mechanical center axis and the dose center axis was assessed on a 4 mm collimator. The allowed difference in accuracy is within 0.3 mm and it was measured as 0.098 mm, 0.195 mm for A hospital and 0.229 mm, and 0.223 mm for B hospital. For precision the difference between the FWHM(Full Width at Half Maximum) of Gamma Plan and measurement in the 4, 8, and 16 mm collimators was calculated. The allowed difference in precision is less than ${\pm}1mm$. The value of the hospital A was -0.283 ~ 0.583 mm, and the hospital B was -0.857 ~ 0.810 mm. When analyzing the dose distributions using the image-j program, it is necessary to establish a clearer reference point of the measurement point, and it is considered that the comparison of the dose distribution should be performed in actual treatment irradiation dose with a high dose usable film.

Evaluation of Radiation Exposure to Medical Staff except Nuclear Medicine Department (핵의학 검사 시행하는 환자에 의한 병원 종사자 피폭선량 평가)

  • Lim, Jung Jin;Kim, Ha Kyoon;Kim, Jong Pil;Jo, Sung Wook;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.32-35
    • /
    • 2016
  • Purpose The goal for this study is to figure out that medical staff except Nuclear Medicine Department could be exposed to radiation from the patients who take Nuclear Medicine examination. Materials and Methods Total 250 patients (Bone scan 100, Myocardial SPECT 100, PET/CT 50) were involved from July to October in 2015, and we measured patient dose rate two times for every patients. First, we checked radiation dose rate right after injecting an isotope (radiopharmaceutical). Secondly, we measured radiation dose rate after each examination. Results In the case of Bone scan, dose rate were $0.0278{\pm}0.0036mSv/h$ after injection and $0.0060{\pm}0.0018mSv/h$ after examination (3 hrs 52 minutes after injection on average). For Myocardial SPECT, dose rate were $0.0245{\pm}0.0027mSv/h$ after injection and $0.0123{\pm}0.0041mSv/h$ after examination (2 hrs 09 minutes after injection on average). Lastly, for PET/CT, dose rate were $0.0439{\pm}0.0087mSv/h$ after examination (68 minutes after injection on average). Conclusion Compared to Nuclear Safety Commission Act, there was no significant harmful effect of the exposure from patients who have been administered radiopharmaceuticals. However, we should strive to keep ALARA(as low as reasonably achievable) principle for radiation protection.

  • PDF