• Title/Summary/Keyword: 방사선 측정 시스템

Search Result 351, Processing Time 0.026 seconds

Isocenter Reproducibility with Mask Fixation System in Stereotactic Radiosurgery (정위 마스크 시스템을 사용한 방사선수술시 회전중심점의 재현성)

  • 이동준;손문준;이기택;최찬영;황금철;황충진
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.135-138
    • /
    • 2002
  • Fractionated stereotactic radiosurguy (FSRS) requires precise and reproducible patient set up. For these reasons non-invasive mask fixation methods have been used in Linac based FSRS. In this study, we measured and assessed the isocenter reproducibility using a commercial head mask fixation system based on thermoplastic materials. For the verification and the measurement of isocenter deviation a special acrylic brain phantom was designed. The designed phantom has 22 vertical rods and each rod has different lengths. At the end of the 8 rods, the monochromic film is attached and irradiated due to planned target position. Deviations of isocenter were measured separately for each direction. The mean deviation showed 0.4 mm in longitudinal direction, 0.1 mm in the lateral direction, 0.1 mm in the anterior-posterior direction of the treatment couch. The data demonstrates the high accuracy and reproducibility. This study reinforces previous literature published.

  • PDF

PDA based Bluetooth Wireless Radiation Counter (PDA기반의 블루투스 무선통신 방사선 측정 장치)

  • Im, Sang-Heui;Park, Dae-Sung;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.1
    • /
    • pp.5-10
    • /
    • 2008
  • This study developed a PDA based wireless communication radiation measuring instrument using Bluetooth. The proposed system is composed of Student Radiation Monitor of Vernier using GM (Geiger Mueller) counter tube as a radiation measuring sensor, LabPro of Vernier as a module for data collection, Promi SD 101 of Initium, which can make Bluetooth communication up to 30 m, for wireless data transmission, and HP 5550 embedded with Pocket PC 2003 as OS for data storage and display. Because GM counter tube is used as a radiation measuring sensor, the system cannot measure radiation energy but measures count volume and count rate. When the result of natural radiation measuring by the PDA based system was compared with that by a PC based system, it was found that the proposed system transmits and receives data without distortion.

  • PDF

고체 팬톰을 이용한 방사선치료계획시스템의 정도관리

  • 이상훈;조광환;조삼주;최진호;추성실;권수일;신동오
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.65-65
    • /
    • 2003
  • 목적 : 방사선치료기술이 날로 발전함에 따라 방사선치료계획시스템에 대한 주기적인 정도관리의 필요성은 증대하고 있으나, 국내 실정에 적합한 표준화된 정도관리절차서가 없는 실정이다. 따라서 본 연구에서는 방사선치료계획용 시스템에 대한 정도관리용 고체팬톰을 제작하여 주기적인 정도관리 활용 및 절차서를 제시하고자 한다. 대상 및 방법 : 체윤곽 보정을 위한 삼각기둥 모형 (30cm$\times$30cm$\times$5cm, 30cm$\times$15cm$\times$5$\times$) 및 정형ㆍ부정형, 불균질 측정이 가능한 물등가고체팬톰을 제작하였고, 컴퓨터단층촬영(AcQsim)을 통해 영상을 얻었으며, RTPS(AcQplan)에 입력하여 영상 내 기준점에서의 선량값을 계산하였다. RTPS를 통해 계산된 값의 평가를 위해 동일한 조건하에서 각 기준점에 대한 실제 측정을 이온함을 이용하여 측정하였다. 평가 항목으로는 정방형 조사면, 부정형 조사면, 쐐기 조사면, 불균질 물질 보정, 사방향 조사 등에 대해서 알고리즘별로 수행하였다. 결과 : RTPS를 이용하여 계산된 값과 실제 측정한 값을 비교하여 RTPS의 정확성을 평가한 결과로 합성의 불확도 허용 기준 (3%), 선속 중심축 상에서의 허용 기준 (2%) 등, 선진 각국 및 각 학회에서 권고하고 있는 허용 범위 내에서 잘 일치하였다. 결론 : RTPS는 측정된 심부선량과 선량분포 등 물리적인 인자에 의존하는 제한성이 있고, 실제로 선량계산 알고리즘과 기하학적 변화에 따라 계산값과 측정값 간에 차이가 발생할 수 있었다. 실제 인체의 체윤곽 불균일성과 불균질성을 모사한 팬톰을 제작하여 이용함으로써 다양한 RTPS간의 비교를 통한 치료 선량의 정확성을 평가하고, 방사선 치료의 원활하고 정확한 수행을 위해 실용적이고, 보편적인 치료계획 시스템의 정도관리 방법과 절차서를 수립하는데에 유용할 것으로 사료된다.

  • PDF

Evaluation of Dose Distribution of 6 MV X-ray using Optical Dosimetry (광 도시메트리시스템을 이용한 치료용 6 MV X선 선량분포 평가)

  • Kim, Sunghwan
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.925-932
    • /
    • 2019
  • In this paper, we developed optical dosimetry system with a plastic scintillator, a commercial 50 mm, f1.8 lens, and a commercial high-sensitivity CMOS (complementary metal-oxide semiconductor) camera. And, the correction processors of vignetting, geometrical distortion and scaling were established. Using the developed system, we can measured a percent depth dose, a beam profile and a dose linearity for 6 MV medical LINAC (Linear Accelerator). As results, the optically measured percent depth dose was well matched with the measured percent depth dose by ion-chamber within 2% tolerance. And the determined flatness was 2.8%. We concluded that the optical dosimetry system was sufficient for application of absorbed dose monitoring during radiation therapy.

Developement of Radiation Measuring System using Wireless Communication (무선통신을 이용한 방사선측정 시스템 개발)

  • Lee, Bong-Jae;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.85-95
    • /
    • 1995
  • Radiation measuring system using wireless communication method with single channel has been diveloped and tested. In this system, radiation signals from GM tube are transformed into digital pulses in pulse processing circuit and modulated in FSK (frequency shift keying) circuit for digital communication and then wirelessly transmitted to a receiving unit. The digital pulses received are then demodulated in FSK circuit and converted into radiation dose/dose rate in the data acquisition unit to display on the screen of a personal computer. The performance of this system was evaluated by using both a pulse generator and a standard radiation source(Cs-137). In both cases, digital pulses with 5V were observed in pulse processing circuit without distortion of their shape through wireless communication system. The experimental results of radiation measurement by this system after several test-irradiation of GM detector to a standard radiation source(Cs-137), showed good agreement with irradiation dose rate within 10% difference, and proved that this system could be effectively utillized as radiation measuring instrument. It is expected that this wireless radiation measuring system developed for the first time in Korea, can be used as a radiation monitor as well as a personal dosimeter if we can further improve this system to adopt wireless multichannel communication system.

  • PDF

원자력발전소 - 환경방사선 감시온라인 시스템설치와 운영

  • 김남천
    • Nuclear industry
    • /
    • v.15 no.3 s.145
    • /
    • pp.79-81
    • /
    • 1995
  • 원전으로부터 방사성물질의 외부방출로 인한 환경영향을 측정하고, 뜻하지 않은 사고시 환경에서의 이상징후를 조기에 알아보기 위해, 원자력발전소에서는 환경방사선 감시시스템을 설치$\cdot$운영하고 있다. 감시단말기는 $486DX_2$급으로 20인치 터치스크린 컬러 모니터로 하였고 단말기 조작을 쉽게 하기 위해 화면 터치, 마우스 사용, 키보드 사용 등 어느 것을 사용하여도 가능하도록 하여 누구나 쉽게 측정자료를 출력해 볼 수 있도록 하였다.

  • PDF

Development of a Portable Device Based Wireless Medical Radiation Monitoring System (휴대용 단말 기반 의료용 무선 방사선 모니터링 시스템 개발)

  • Park, Hye Min;Hong, Hyun Seong;Kim, Jeong Ho;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.150-158
    • /
    • 2014
  • Radiation-related practitioners and radiation-treated patients at medical institutions are inevitably exposed to radiation for diagnosis and treatment. Although standards for maximum doses are recommended by the International Commission on Radiological Protection (ICPR) and the International Atomic Energy Agency (IAEA), more direct and available measurement and analytical methods are necessary for optimal exposure management for potential exposure subjects such as practitioners and patients. Thus, in this study we developed a system for real-time radiation monitoring at a distance that works with existing portable device. The monitoring system comprises three parts for detection, imaging, and transmission. For miniaturization of the detection part, a scintillation detector was designed based on a silicon photomultiplier (SiPM). The imaging part uses a wireless charge-coupled device (CCD) camera module along with the detection part to transmit a radiation image and measured data through the transmission part using a Bluetooth-enabled portable device. To evaluate the performance of the developed system, diagnostic X-ray generators and sources of $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, and $^{90}Sr$ were used. We checked the results for reactivity to gamma, beta, and X-ray radiation and determined that the error range in the response linearity is less than 3% with regard to radiation strength and in the detection accuracy evaluation with regard to measured distance using MCNPX Code. We hope that the results of this study will contribute to cost savings for radiation detection system configuration and to individual exposure management.

Development of Radiation Detector with Intensifying Screen (증감지를 이용한 방사선검출기 개발)

  • Jeong-Min Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.859-863
    • /
    • 2023
  • In this study, simple and portable radiation detection system using X-ray intensifying screen, optical sensor and micro-controller unit for education was proposed. The system was simply composed of detection unit consisting of an optical sensor and intensifying screen, micro-controller unit, and was designed to be suitable for portable. Radiation was measured using developed detection system and absorbed dose dosimeter with changing tube voltage from 50 to 100 kVp. The tube current and SDD were fixed on 100 mAs and 100 cm, and dose were measured repeated ten times at each tube voltage. The response and linearity of the detection system were confirmed using the measured values. It was confirmed that the comparison measurement results of the detection system and absorbed dose dosimeter showed a high correlation(r : 0.998, p<.001). In this results, the feasibility of the detection system with intensifying screen and micro-controller unit based was confirmed, and we considered that the developed detection system could be applied to portable, compact, low cost system for education.

Assessment of Dosimetric Leaf Gap According to Measuring Active Volume of Detector (검출기 측정 용적에 따른 Dosimetric Leaf Gap 변화와 정확성 검증에 대한 연구)

  • Dae-Hyun, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.863-870
    • /
    • 2022
  • DLG (Dosimetric Leaf Gap) and transmission factor are important parameters of MLC modeling in treatment planning system. In this study, DLG and transmission factor of HD-MLC were measured using detector with different measuring volumes, and the accuracy of the treatment plans was evaluated according to the DLG values. DLG was measured using the dynamic sweeping gap method with Semiflux3D and MicroDiamond detectors. Then, 10 radiation treatment plans were generated to optimize the DLG value and compared with the measurement results. Photon energies 6, 8, 10 MV, the DLG measured by Semiflux3D were 0.76, 0.83, and 0.85 mm, and DLG measured by MicroDiamond were 0.78, 0.86, and 0.9 mm. All plans were measured by portal dosimetry and analyzed using Gamma Evaluation. In the 6 MV photon beams, the average gamma passing rate were 94.3% and 98.4% for DLG 0.78 mm and 1.15 mm. In the 10 MV photon beam, the average gamma passing rate were 91.2% and 97.6% for DLG 0.9 mm and 1.25 mm. HD-MLC needs accurate modeling in the treatment planning system. DLG could be used measured data using small volume detector. However, for better radiation therapy, DLG should be optimized at the commissioning stage of LINAC.

Development and Evaluation of a Mobile Environmental Radiation Measurement System That Can Switch between Low and High Dose Measurement Sections (저선량과 고선량 측정구간 변환이 가능한 모바일 방사선 측정시스템 개발 및 평가)

  • Lee, Hong-Yeon;Han, Sang-Jun;Kim, Bo-Gil;Lee, Geon-Ju;Kim, Seok-Hyeon;Kim, Jeong-Hun
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • This study is to develop a mobile type environmental radiation measurement system for emergency response or environmental radiation monitoring of local governments near nuclear facilities. A mobile radiation measurement system can monitor radiation by field beyond the spatial constraints of a fixed environmental radiation monitor. If installed in local government infrastructure such as public transportation, environmental radiation can be monitored without additional manpower and measurement work. In addition, it is designed to enable monitoring and measurement of radiation from low to high doses as well as the environment in preparation for radioactive disasters such as nuclear power plant accidents. It is expected that this system will be utilized not only in normal times but also in the event of a radiation accident to improve the disaster prevention capabilities of local governments.