• Title/Summary/Keyword: 방사선 차폐효과

Search Result 146, Processing Time 0.019 seconds

Development of Radiation Shielding Sheet with Environmentally-Friendly Materials; II: Evaluation of Barum, Tourmaline, Silicon Polymers in the Radiation Shielding Sheet (친환경 소재의 의료 방사선 차폐 시트 개발; II: 바륨, 토르말린의 실리콘 폴리머 차폐 시트의 성능 평가)

  • Kim, Seon-Chil;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.34 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • We developed an alternative radiation shielding material which is economical and has high protection efficiency. We validated the material in the form of sheet to make an apron. We increased the rate of barium and mixed tourmaline into silicon to improve the flexibility and protection rate of the sheet. The results showed that the shielding effect at low radiation energy is good enough with both 5 mm and 7 mm thickness. In the future, we will perform a quantitative evaluation of the reproducibility, volumetric efficiency, and porosity in mixing the ingredients.

An Analysis of Exposure Dose on Hands of Radiation Workers using a Monte Carlo Simulation in Nuclear Medicine (몬테카를로 모의 모사를 이용한 핵의학과 방사선작업종사자의 손에 대한 피폭선량 분석)

  • Jang, Dong-Gun;Kang, Sesik;Kim, Junghoon;Kim, Changsoo
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.477-482
    • /
    • 2015
  • Workers in nuclear medicine have performed various tasks such as production, distribution, preparation and injection of radioisotope. This process could cause high radiation exposure to wokers' hand. The purpose of this study was to investigate shielding effect for r-rays of 140 and 511 keV by using Monte-carlo simulation. As a result, it was effective, regardless of lead thickness for radiation shielding in 140 keV r-ray. However, it was effective in shielding material with thickness of more than only 1.1 mm in 511keV r-ray. And also it doesn't effective in less than 1.1 mm due to secondary scatter ray and exposure dose was rather increased. Consequently, energy of radionuclide and thickness of shielding materials should be considered to reduce radiation exposure.

Development of Shielding using Medical Radiological Contrast Media; Comparison Analysis of Barium Sulfate Iodine Shielding ability by Monte Carlo Simulation (의료방사선 조영제를 이용한 차폐체 개발; 몬테카를로 시뮬레이션을 통한 황산바륨과 요오드의 차폐능 비교분석)

  • Kim, Seon-Chil
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.329-334
    • /
    • 2017
  • The purpose of this study is to estimating the possibility of manufacturing radiation shielding sheet by searching for environmentally friendly materials suitable for medical environment of medical radiation shielding. There are many tungsten products which are currently used as shielding materials in place of lead, but there are small problems in the mass production of lightweight shielding sheets due to economical efficiency. To solve these problems, a lightweight, environmentally friendly material with economical efficiency is required. In this study, Barium sulphate and Iodine were proposed. Both materials are already used as contrast medias in radiography, and it is predicted that the shielding effect will be sufficient in a certain region as a shielding material because of the characteristic of absorbing radiation. Therefore, in this study, we used a Monte Carlo simulation to simulate radiation shielding materials. When it is a contrast agent such as Barium sulfate and Iodine, the radiation absorption effect in the high energy region appears greatly, and the effectiveness of the two shielding substance in the energy region of the star with thickness of 120 kVp is also evaluated in the medical radiation imaging region. Simulated estimation results it was possible to estimate the effectiveness of shielding for all two substances. Iodine has higher shielding effect than barium sulfate, 0.05 mm thick appears great effect. Therefore, the Monte Carlo simulation confirms that iodine, which is a radiological contrast agent, is also usable as barium sulfate in the production of radiation shielding sheets.

Analysis of Radiation Shielding Effect of Soft Magnetic Material applied to Military Facility (경량 연자성 소재의 군 시설물 적용 시 방사선 차폐효과 분석)

  • Lee, Sangkyu;Lee, Sangmin;Choi, Gyoungjun;Lee, Byounghwak
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • The purpose of this research is to analyze the radiation shielding effect of soft magnetic material to confirm the applicability to the military facilities. The soft magnetic material is known to be effective in shielding EMP. If this material is also effective in radiation shielding, it is expected that it has a lot of applicability in military protection. In particular, this material contains boron, so it will be effective in shielding neutrons. In this research, experiments were conducted using Cs-137 and Co-60 sources to check the gamma ray shielding effect. In addition, the Monte Carlo N-Particle(MCNP) modeling was applied to evaluate the gamma ray and neutron shielding effect of a military command tent. As a result, as the soft magnetic thickness increased, the shielding performance improved according the linear attenuation law of gamma ray and neutron. Therefore, this research verified that the application of soft magnetic material for military purposes in radiation shielding would be effective.

Shielding Capability Evaluation of Slit-shaped Structure for Scattered X-ray using Monte Carlo Method (몬테카를로 방법을 이용한 슬릿형태 구조물의 차폐능력 평가)

  • Kim, Sangrok;Heo, Jaeseung
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.733-740
    • /
    • 2020
  • As the use of radiation for medical purposes increases, the exposure dose of medical workers is also increasing. To reduce this dose, various studies on changing the shielding material have been conducted. Recently, a new method to reduce the dose at the entrance of the radiation treatment room was proposed by using the photoelectric effect that occurs when the radiation is scattered. Because this method is particularly effective for low-energy photons, in this study, a slit-type structure was proposed as a excellent shielding structure against scattered x-ray in a general photography room, and was evaluated the shielding effect by Monte Carlo simulation. As a result of the calculation, this study found that in the case of a structure in which steel plates with a thickness of 2 mm and a width of 5 cm are stacked at 2 mm intervals, a shielding effect was approximately 99.9% or more, excluding the heights of the floor and the patient where scattering occurs directly.

Preliminary Study of Cosmic-ray Shielding Material Design Using Monte-Carlo Radiation Transport Code (몬테카를로 방사선 수송 모델을 활용한 우주방사선 차폐체 설계 관련 선행연구)

  • Kang, Chang-Woo;Kim, Yeong-Chan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.527-536
    • /
    • 2022
  • The radiation shielding characteristic of neutron shielding material has been studied as the preliminary study in order to design cosmic-ray shielding material. Specially, Soft Magnetic Material, known to be effective in EMP and radiation shielding, has been investigated to check if the material would be applicable to cosmic-ray shielding. In this work, thermal neutron shielding experiment was conducted and the Monte Carlo N-Particle(MCNP) was applied to employ skymap.dat, which is cosmic-ray data embedded in MCNP. As a result, polyethylene, borated polyethylene, and carbon nano tube, containing carbon or hydrogen, have been found to be effective in reduction of neutron flux below 20 MeV (including thermal, epithermal, evaporation). In contrast, the materials composed of iron such as SS316 and Soft Magnetic Material show a good shielding performance in the cascade energy range (above 20 MeV). Since Soft Magnetic Material is consisting of 13% of boron, it can also decrease thermal neutron flux, so it is expected that it would show a significant reduction on the entire range of neutron energy if the Soft Magnetic Material is used with hydrogen and carbon, so called low Z material.

Radiation Protective Effect of the Thyroid Gland Using Bolus Protector in the Dental Cone Beam Computed Tomography (치과 콘빔 전산화단층검사 시 보루스 차폐체를 이용한 갑상선의 방사선 차폐효과)

  • Lee, Tae Hui;Jeong, Seung Hun;Kim, Dong Woo;Park, Myeong Hwan;Kim, Tae-Hyung
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.459-464
    • /
    • 2019
  • In order to minimize the radiation exposure dose of the thyroid site at dental cone-beam computer tomography, a protector using a Bolus was prepared, and the radiation shielding effect and the appropriateness of the image were evaluated. Using a dental cone-beam computed tomography (CBCT), a glass dosimeter was attached to the left and right sides of the thyroid for a dental radiation phantom, and the radiation dose was measured. The absorbed dose for each shield was measured by another method to 10 mm, 20 mm, and 30 mm-thickness, respectively. Eight evaluators evaluated whether or not the medical image is appropriate. When using a 30 mm Bolus shield at the left thyroid site, the resulting value is reduced by an average of $342.67{\mu}Gy$ by 20.7% from the average value of $431.22{\mu}Gy$ measured without using a Bolus shield, the right thyroid site In the case of using 30 mm Bolus shield, it showed a dose reduction effect of 21.9% with an average of $424.56{\mu}Gy$. The adequacy of the medical image was judged to be usable by both evaluators. In conclusion, the dental cone-beam computerized tomography can be used as a useful shielding material because it has a radiation shielding effect and it is possible to treat the diagnosis of the bolus protector in the thyroid without any obstruction shade in order to minimize the radiation dose.

Evaluation of the Shielding Effect of Polyvinyl Chloride (PVC) on Low-dose Blending Radiation Energy (폴리 염화 비닐(PVC)의 저선량 융합 방사선에너지에 대한 차폐 효과 평가)

  • Kim, Seon-Chil;Cho, Sung-Hyoun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.129-134
    • /
    • 2019
  • PVC was chosen as a plastic product that can cope with lead, a radiation shielding material that is widely used in medical institutions. In addition to radiation shielding clothing, we want to evaluate whether it can be used as a medical device component and industrial shielding material in low dose areas. Commercial PVC has a density of 3.68 g/㎠ and can be positively expected sufficient shielding effect in certain radiation areas such as material flexibility and economy efficiency, and can be transformed into various forms and used as a lightweight shielding wall. The shielding performance was tested by adjusting the thickness of 5 sheets of 3mm PVC in the range of medical radiation used for clinical examination in medical institutions. Shielding performance against effective energy was evaluated based on tube radiation voltage of medical radiation. The thicker the PVC, the lower the tube voltage and the lower the effective energy, the greater the shielding effect. The shielding effect was 70% at 12mm thickness and 80kVp tube voltage. Therefore, the shielding effect of PVC material has a high dependence of thickness. In the future, continuous research is needed to make thin and light eco-friendly products while improving shielding performance.

A Study on the Apron Shielding Ratio According to Electromagnetic Radiation Energy (감마선 에너지에 따른 납치마의 차폐효과 분석)

  • Jang, Dong-Gun;Lee, Sang-Ho;Choi, Hyung-Seok;Son, Joo-Chul;Yoon, Chang-Yong;Ji, Yung-Sik;Cho, Yong-In;Lee, Hong Je;Yang, Seoung-Oh
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.247-252
    • /
    • 2014
  • The medical institution has been used electromagnetic radiation of various energy. But researchers are divided on whether using apron for radiation shielding will be effective or not. The purpose of present study was to analyze electromagnetic radiation shielding effect of apron by using Monte carlo simulation. 1 MBq electromagnetic radiation was emitted from 10-500 keV at 10 keV increments in Monte carlo simulation. Then shielded radiation dose difference was confirmed, when 0.25 mmPb shield use for shielding. As a results, shielding ratio was markedly decreased in high energy electromagnetic radiation. The radiation dose was inversely increased with 0.25 mmPb shielding.