• Title/Summary/Keyword: 방사선 보호 장구

Search Result 10, Processing Time 0.018 seconds

Analysis of Radiology Students' Behavior in Wearing Radiation Protection Equipment - based on the Theory of Planned Behavior (계획된 행위이론을 적용한 방사선학과 대학생들의 방사선 방어용 보호장구 착용에 대한 분석)

  • Noh, Ji-Sook;Lee, Byung-Hoon;Bea, Sang-Yul;Park, Hyung-Su;Ryu, So-Yen;Park, Jong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.443-452
    • /
    • 2011
  • This research aims at investigating the factors that affects the wearing of the nuclear protection equipment by radiology students. We measured the factors related to the wearing of the nuclear protection equipment based on the theory of planned behavior (TPB). We collected 192 survey records from 230 radiology students in Kwang-ju and Chun-nam providence who finished the clinical training. Based on Logistic Regression analysis, we found that the wearing of the nuclear protection equipment is statistically more probable as the level of study is lower, the scale of practicing hospital is smaller, the attitude rating is lower, and the rating of perceived behavioral control is higher. We argue that the development of educational program considering factors like the perceived behavioral control is required to enhance the degree of wearing the nuclear protection equipment in the clinical training of college students.

Monte Carlo Simulation for Radiation Protection Sheets of Pb-Free (무연 방사선 차폐 시트에 대한 몬테카를로 전산모사)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 2017
  • Radiation protection equipment has widely used to protect human body from radiations, for example X-ray and gamma ray. The material of the radiation protection equipment is mainly lead (Pb) which has brought out lead poisoning and pollution when the equipment is fallen into disuse. This problem makes research and development find new Pb-free materials for use of radiation protection. Manufacturing and evaluation processes for developing those material were carried out repletely until obtaining the performance of protection rate. In this study, combination possibility of shielding material was studied using Geant4 monte carlo simulation. X-ray tube under the same condition in the real measurement of the protection rate was simulated, and X-ray tube spectrum was obtained. The X-ray tube spectrum was applied to study on the protection rate and lead equivalent. The porosity effect was simulated, and was one of key factors to determine protection rate or lead equivalent in radiation protection sheet of Pb-free.

3D Printing of Tungsten-Polymer Composites for Radiation Shielding (방사선 차폐를 위한 3D 프린팅용 텅스텐-고분자 복합체 설계)

  • Eom, Don-Geon;Kim, Shin-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.643-650
    • /
    • 2020
  • The materials with a high processiblity for radiation shielding, in particular for 3D printable materials, are highly demanding for producing robots working in nuclear plants and designing customized personal protection equipment. In this study, we suspend tungsten particles in a polymeric matrix of either PLA or ABS to compose tungsten-polymer composite filaments; PLA and ABS are widely used for conventional FDM-based 3D printing. The weight fraction of tungsten particles can be increased up to 50% without forming macroscopic aggregates. The composite filaments can be used to print 3D architectures with any shape and geometry. To demonstrate one of potential applications, we print parts for robot actuator and assemble them to protect PCB against gamma ray.

A Study on Radiation Exposure Dose of Patients and Operator during Percutaneous Vertebroplasty (경피적 추체 성형술 시행 시 환자와 시술자의 방사선 피폭선량에 관한 연구)

  • Lee, Jae-Heon;Shin, Seong-gyu;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 2017
  • Percutaneous vertebroplasty (PVP) is increasingly used to treat osteoporotic vertebral fractures, myeloma and osteolytic vertebral metastases. The purpose of this study was to measure the absorbed radiation exposure dose and time during PVP and to assess the possibility of deterministic radiation effects to the operator and patient. The radiation dose and time measure by three pain physicians performed consecutive procedures using the twenty case PVP. Patient's dosimeter placed at the anteroposterior(AP) side was treatment of the vertebra body located in the upper level 2-3 and lateral(LAT) side was flank proximal to C-arm tube of back. Operator's dosimeter placed at the apron outside of upper sternum (thyroid), left chest, lower extremity and apron inside of left chest. Results: Radiation exposure times were $3.6{\pm}0.71min$. Measurements on the Patient radiation dose were AP $121.4{\pm}48.1{\mu}Sv$, LAT side $614.7{\pm}177.1{\mu}Sv$. Operator radiation dose were outside of the lead apron upper sternum $33.7{\pm}7.3{\mu}Sv$, outside of the lead apron chest $49.2{\pm}15.0{\mu}Sv$, outside of the lead apron lower extremity $12.8{\pm}3.8{\mu}Sv$ and inside of the lead apron chest $4.2{\pm}1.4{\mu}Sv$. To escape from the danger of radiation first long distance from the c-arm tube second exposure time reduced second lead apron used fluoroscopy during PVP is more safety patient and operation from the radiation exposure.

A Study on the Prevention of Healthcare Associated Infection in Chest PA Projection of Contact Infected Patients (접촉성 감염환자 흉부검사 시 의료관련감염 예방에 대한 연구)

  • Lee, Sang-Won;Kim, Dong-Jin;Lee, Bae-Won
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.297-304
    • /
    • 2018
  • This study proposes measures and methods to reduce healthcare associated infections by comparing and analyzing the bacterial contamination level before and after putting on personal protective equipment (PPE) on the test equipment and the contact infected patients getting chest PA projections. Among the 50 inpatients who were diagnosed with C. difficile, MRSA, and VRE, 28 patients who were instructed to undergo chest PA projection and follow-up were chosen, The 3 parts that come in contact with the detector, chin, chest, and hands, were designated for all, and the bacterial contamination level before and after disinfection and before and after putting PPE was determined. Statistical analysis was performed using Medcalc version 14, and quantitative analysis was performed using paired student t-test, with statistical significance being noted at p<0.05. Results for the comparison of the mean values before and after disinfection of the detector, chin (3.000), chest (2.000), and hands (3.430), showed that the number of bacteria after disinfection was lower than it was before disinfection. Analyzing for each part before and after disinfection, there were statistically significant differences for the chin, chest, and hands (p<0.01). Results for the comparison of the mean values before and after putting on PPE, chin (2.202), chest (2.140), and hands (4.213), showed that the number of bacteria after putting on PPE was lower than it was before putting on PPE. Analyzing for each part before and after putting on PPE, there were statistically significant differences for the chin, chest, and hands (p<0.03). As a result, it was confirmed that the number of bacteria after putting on PPE was lower than it was before putting it on. In the future, expanding the research scope for contact infected patients will establish standards for quarantine guidelines depending on the way it spreads, and contribute to the prevention of healthcare associated infections.

A Study on the Guardian's Perception of Attending Patient in Pediatric Radiography (소아 방사선 검사 시 보호자 참여에 대한 인식도 조사)

  • Kwak, JongHyeok;Jeong, JaeBeom
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.189-201
    • /
    • 2014
  • The purpose of this study was to survey guardian's opinion on assisting pediatric radiography and their level of awareness of radiation, improving the quality of pediatric radiography. In this study, the recognition was analyzed for 210 parents of child patients in Pusan National University Hospital from August 20 to September 15, 2013. A total of 66.2 percent of the respondents said they had participated in pediatric radiography in the past. The reason why they did is "Radiologist's request", the highest. According to the survey, 84.3 percent said they thought it is necessary to attending patient in pediatric radiography. "The stability of the child" is the reason for it. And respondents who thought there's no need to do that answered back, the reason for this is "Radiologist's work." There was a significant difference on the psychological state for the medical radiation by gender and child age. (p<0.05) In the analysis of recognition for the radiation, there was the significance by gender and education. (p<0.05) Regarding the awareness of the radiation protector, there was a statistical significance in age, gender, child age and education. (p<0.05) Considering the results, pediatric patient's guardians recognized that it is necessary to attend a child on X-ray for their child's stability and accurate exam above all. It must make guardians wear X-ray protector and radiologist should let the guardians recognize the X-ray examination method, before starting pediatric x-ray. It needs to improve the atmosphere of the examination room and to be considered to take visual and auditory approaches in comfort for reducing the children's fear and anxiety.

A Study on Protection Performance of Radiation Protective Aprons classified by Manufacturers and Lead Equivalent using Over Tube Type Fluoroscopy (Over Tube Type의 투시촬영장치를 이용한 제조사별, 납당량별 엑스선방어 앞치마의 Protection 성능 평가에 관한 연구)

  • Song, Jong-Nam;Seol, Gwang-Wook;Hong, Seong-Il;Choi, Jeong-Gu
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.135-141
    • /
    • 2011
  • If protective performance of apron cannot be good, radiation exposure of an guardian or a patient, a person engaged in radiation related industry cannot rise. Therefore, It will be evaluated protection performance to radiation protection aprons by manufacturers and lead equivalent more than 0.25mm lead equivalent. And, will show in the direction of application to clinic. The new aprons by manufacturers(H, X, I, J company) and lead equivalent(0.50mmPb, 0.35mmPb, 0.25mmPb) measured transmitted dose rate and shielding rate, uniformity under fluoroscopy and general radiography using to fluoroscopy system and digital radiography system, x-ray multifunction meter. The shielding rate measurement results, 0.5mmPb apron was Shielding rate of apron of a I company(fluoroscopy : 97.96%) was the best under six companies, and shielding rate of apron of a J company(fluoroscopy : 96.25%) was worst. 0.35mmPb Apron was Shielding rate of a I company(fluoroscopy : 96.79%) was the best under the three companies, and shielding rate of an H company(fluoroscopy : 95.81%) was the worst. 0.25mmPb Apron was Shielding rate of X company apron(fluoroscopy : 90.908%) was better than H company apron(fluoroscopy : 88.82%) than two companies. The uniformity measurement results, 0.5mmPb Aprons of X company(fluoroscopy : 0.13) and I company(fluoroscopy : 0.19) was the best under the six companies, and J company apron(fluoroscopy : 0.45) was the worst. 0.35mmPb. Along a manufacturer and lead equivalent performance of apron protection is distinguished certainly. Therefore, a patient, guardian or a person engaged in radiation related industry shall enforce experiment of a lot of ways defined or evaluation so that the maximum reduces radiation exposure. Buy the apron that protective performance is good, It will be performed through experiment and evaluation.

Evaluation of Radiation Exposure to Medical Staff except Nuclear Medicine Department (핵의학 검사 시행하는 환자에 의한 병원 종사자 피폭선량 평가)

  • Lim, Jung Jin;Kim, Ha Kyoon;Kim, Jong Pil;Jo, Sung Wook;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.32-35
    • /
    • 2016
  • Purpose The goal for this study is to figure out that medical staff except Nuclear Medicine Department could be exposed to radiation from the patients who take Nuclear Medicine examination. Materials and Methods Total 250 patients (Bone scan 100, Myocardial SPECT 100, PET/CT 50) were involved from July to October in 2015, and we measured patient dose rate two times for every patients. First, we checked radiation dose rate right after injecting an isotope (radiopharmaceutical). Secondly, we measured radiation dose rate after each examination. Results In the case of Bone scan, dose rate were $0.0278{\pm}0.0036mSv/h$ after injection and $0.0060{\pm}0.0018mSv/h$ after examination (3 hrs 52 minutes after injection on average). For Myocardial SPECT, dose rate were $0.0245{\pm}0.0027mSv/h$ after injection and $0.0123{\pm}0.0041mSv/h$ after examination (2 hrs 09 minutes after injection on average). Lastly, for PET/CT, dose rate were $0.0439{\pm}0.0087mSv/h$ after examination (68 minutes after injection on average). Conclusion Compared to Nuclear Safety Commission Act, there was no significant harmful effect of the exposure from patients who have been administered radiopharmaceuticals. However, we should strive to keep ALARA(as low as reasonably achievable) principle for radiation protection.

  • PDF

A Case of Acute Respiratory Distress Syndrome Caused by Nitric Acid Inhalation (질산(Nitric Acid) 증기 흡입에 의한 급성호흡곤란증후군 1예)

  • Kim, Dae Sung;Yoon, Hye Eun;Lee, Seung Jae;Kim, Yong Hyun;Song, So Hyang;Kim, Chi Hong;Moon, Hwa Sik;Song, Jeong Sup;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.690-695
    • /
    • 2005
  • Nitric acid is an oxidizing agent used in metal refining and cleaning, electroplating, and other industrial applications. Its accidental spillage generates oxides of nitrogen, including nitric oxide (NO) and nitrogen dioxide ($NO_2$), which cause chemical pneumonitis when inhaled. The clinical presentation of a nitric acid inhalation injury depends on the duration and intensity of exposure. In mild cases, there may be no symptoms during the first few hours after exposure, or the typical symptoms of pulmonary edema can appear within 3-24 hours. However, in cases of prolonged exposure, progressive pulmonary edema develops instantaneously and patients may not survive for more than 24 hours. We report a case of a 44-year-old male who was presented with acute respiratory distress syndrome after nitric acid inhalation. He complained of cough and dyspnea of a sudden onset after inhaling nitric acid fumes at his workplace over a four-hour period. He required endotracheal intubation and mechanical ventilation due to fulminant respiratory failure. He was managed successfully with mechanical ventilation using positive end expiratory pressure and systemic corticosteroids, and recovered fully without any deterioration in his pulmonary function.

The study of MDCT of Radiation dose in the department of Radiology of general hospitals in the local area (일 지역 종합병원 영상의학과 MDCT선량에 대한 연구)

  • Shin, Jung-Sub
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.4
    • /
    • pp.281-290
    • /
    • 2012
  • The difference of radiation dose of MDCT due to different protocols between hospitals was analyzed by CTDI, DLP, the number of Slice and the number of DLP/Slice in 30 cases of the head, the abdomen and the chest that have 10 cases each from MDCT examination of the department of diagnostic imaging of three general hospitals in Gyeongsangbuk-do. The difference of image quality, CTDI, DLP, radiation dose in the eye and radiation dose in thyroid was analyzed after both helical scan and normal scan for head CT were performed because a protocol of head CT is relatively simple and head CT is the most frequent case. Head CT was significantly higher in two-thirds of hospitals compared to A hospital that does not exceed a CTDI diagnostic reference level (IAEA 50mGy, Korea 60mGy) (p<0.001). DLP was higher in one-third of hospitals than a diagnostic reference level of IAEA 1,050mGy.cm and Korea 1,000mGy.cm and two-thirds exceeded the recommendation of Korea and those were significantly higher than A hospital that does not exceed a diagnostic reference level (p<0.001). Abdomen CT showed 119mGy that was higher than a diagnostic reference level of IAEA 25mGy and Korea 20mGy in one-third. DLP in all hospitals was higher that Korea recommendation of 700mGy.cm. Among target hospitals, C hospital showed high radiation dose in all tests because MPR and 3D were of great importance due to low pitch and high Tube Curren. To analyze the difference of radiation dose by scan methods, normal scan and helical scan for head CT of the same patient were performed. In the result, CTDI and DLP of helical CT were higher 63.4% and 93.7% than normal scan (p<0.05, p<0.01). However, normal scan of radiation dose in thyroid was higher 87.26% (p<0.01). Beam of helical CT looked like a bell in the deep part and the marginal part so thyroid was exposed with low radiation dose deviated from central beam. In addition, helical scan used Gantry angle perpendicularly and normal scan used it parallel to the orbitomeatal line. Therefore, radiation dose in thyroid decreased in helical scan. However, a protocol in this study showed higher radiation dose than diagnostic reference level of KFDA. To obey the recommendation of KFDA, low Tube Curren and high pitch were demanded. In this study, the difference of image quality between normal scan and helical scan was not significant. Therefore, a standardized protocol of normal scan was generally used and protective gear for thyroid was needed except a special case. We studied a part of CT cases in the local area. Therefore, the result could not represent the entire cases. However, we confirmed that patient's radiation dose in some cases exceeded the recommendation and the deviation between hospitals was observed. To improve this issue, doctors of diagnostic imaging or technologists of radiology should perform CT by the optimized protocol to decrease a level of CT radiation and also reveal radiation dose for the right to know of patients. However, they had little understanding of the situation. Therefore, the effort of relevant agencies with education program for CT radiation dose, release of radiation dose from CT examination and addition of radiation dose control and open CT contents into evaluation for hospital services and certification, and also the effort of health professionals with the best protocol to realize optimized CT examination.