• Title/Summary/Keyword: 방사선흡수선량

Search Result 322, Processing Time 0.03 seconds

Analysis of Radiolytic Products of Lipid for the Detection of Irradiated Dried Cuttle Fish (Sepia officinalis) (건 갑오징어의 방사선 조사여부를 판별하기 위한 지방분해산물 분석)

  • Kim, Jun-Hyoung;Kim, Kyoung-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1072-1078
    • /
    • 2003
  • Radiation-induced hydrocarbons and 2-alkylcycolbutanones are formed from the fatty acids of irradiated fat. These radiation-induced compunds were detected by fat extraction with a Soxtec apparatus from dried cuttle fish (Sepia officinalis), isolation of hydrocarbons and 2-alkylcyclobutanones with florisil column chromatography, and identification of GC/MS. Concentration of hydrocarbons produced by -λ-irradiation depended on the composition of fatty acid in dried cuttle fish. The major hydrocarbons in the irradiated dried cuttle fish samples were pentadecane and 1-tetradecene from palmitic acid, heptadecane and 1-hexadecene from stearic acid, and 8-heptadecen and 1,7-hexadecadiene from oleic acid. Of 2-alkylcyclobutanones, 2-dodecylcyclobutanone from palmitic acid was present at the highest level in irradiated dried cuttle fish. The radiation-induced hydrocarbons and 2-alkylcyclobutanones from the irradiated dried cuttle fish were detected at 0.5 kGy and over, but not detected in the non-irradiated fish.

Analysis of Radiation Dose Enhancement for Spread Out Bragg-peak of Proton (확산된 피크의 양성자에서 선량 증강 현상에 대한 분석)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.253-260
    • /
    • 2019
  • Radiation dose enhancement is a method of increasing the cross section of interaction, thus increasing the deposited dose. This can contribute to linear energy transfer, LET and relative biological effectiveness, RBE. Previous studies on dose enhancement have been mainly focused on X, ${\gamma}-rays$, but in this study, the dose enhancement was analyzed for proton using Monte Carlo simulation using MCNP6. Based on the mathematical modeling method, energy spectrum and relative intensity of spread out Bragg-peak were calculated, and evaluated dose enhancement factor and dose distribution of dose enhancement material, such as aurum and gadolinium. Dose enhancement factor of 1.085-1.120 folds in aurum, 1.047-1.091 folds in gadolinium was shown. In addition, it showed a decrease of 95% modulation range and practical range. This may lead to an uncertain dose in the tumor tissue as well as dose enhancement. Therefore, it is necessary to make appropriate corrections for spread out Bragg-peak and practical range from mass stopping power. It is expected that Monte Carlo simulation for dose enhancement will be used as basic data for in-vivo and in-vitro experiments.

Dose Determination in the IR-221 Gamma Facility Using a Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 IR-221의 선량 평가)

  • Lim, Ik-Sung;Kim, Ki-Yup;Roh, Gyu-Hong;Lee, Chung
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • This study is performed to evaluate the dose rate and to analyze the dose distribution of the gamma irradiation facility (IR-221) by using a Monte Calro simulation, which is helpful of upgrading the radiation processing qualification. Monte Cairo simulation is performed by MCNP4B code. Dose rates were measured at total 369 points with alanine dosimeters to compare the calculation results and the measurements data. The results have shown that the MCNP4B code is very useful to determine the dose distribution of the IR-221 gamma irradiation facility, as the calculation dose rate is within about ${\pm}5%$ of the measurement data. Dosimetry about the gamma irradiation facility usually needs enormous manpower and time. However Monte Cairo calculation method can reduce the tedious dosimetry jobs and improve the irradiation processing qualification, which will probably contribute to obtain the reliability of the irradiation products.

Development of Web-based Dosimetry Calibration Program for High Energy Radiation (웹 기반 고 에너지 방사선에 대한 흡수선량 교정 프로그램 개발)

  • Shin Dong Oh;Shin Dong Ho;Kim Sung Hoon;Park Sung Yong;Seo Won Seop;Ahn Hee Kyung;Kang Jin Oh;Hong Seong Eon
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.116-124
    • /
    • 2005
  • Absorbed dose dosimetry protocols of high energy photon and electron beams, which are widely used and based on an air kerma calibration factors, have somewhat complex formalism and limitations for improving dosimetric accuracy due to uncertainty of the physical parameters used. Recently the IAEA and the AAPM published the absorbed dose to water-based dosimetry protocol. In this work web-based dose calibration program for IAEA TRS-398 and AAPM TG-51 protocols were developed. This program developed using the Visual C$\#$ language can be used in the internet. User selectable dosimetry protocol on the web allows the absorbed dose to water data of the two protocols at a reference point to be easily compared, and enables to conveniently manage and understand the current status of the dosimetry calibration performed at participating institutions in korea. This program and the resultant database from the web-based calibration can be useful in developing new dosimetry protocols in Korea.

  • PDF

Radiological Perspectives for Diagnosis of Vasospastic Angina with Coronary Angiography (이형성 협심증 진단 조영 검사의 방사선학적 관점)

  • Jong-Gil Kwak;Young-Hyun Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.589-595
    • /
    • 2023
  • If complete coronary artery occlusion occurs due to severer coronary spasm, malignant arrhythmias can lead to death. Therefore, early screening for coronary artery spasm angina is essential. Among the test methods, the drug injection test through coronary angiography is generally performed. Therefore, the purpose of this study was to evaluate the advantages of ergonovine drug test for vasospasitc angina examination during coronary angiography, such as the relationship between the procedure time, contrast medium usage, and radiation exposure effects of coronary angiography. Follow-up data of 142 patients who underwent coronary angiography and variant angina examination from september 2021 to february 2023 were used. As a result of analyzing contrast usage dose and dose area product and air kerma dose and number of imaging series and procedure time, variant angina examination was statistically significantly higher than coronary angiography. (p<0.001) In conclusion, variant angina examination other than coronary artery angiography are radiologically negative. Therefore, we think it is better to avoid excessive inspection. Nevertheless, in the case of the provocation test, the longer the examination time, the higher the fluoroscopy time and the amount of contrast medium used, so it is better to conduct the test as quickly as possible or shorten it.

A Study on Usefulness of Clinical Application of Metal Artifact Reduction Algorithm in Radiotherapy (방사선치료 시 Metal artifact reduction Algorithm의 임상적용 유용성평가)

  • Park, Ja Ram;Kim, Min Su;Kim, Jeong Mi;Chung, Hyeon Suk;Lee, Chung Hwan;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Purpose: The tissue description and electron density indicated by the Computed Tomography(CT) number (also known as Hounsfield Unit) in radiotherapy are important in ensuring the accuracy of CT-based computerized radiotherapy planning. The internal metal implants, however, not only reduce the accuracy of CT number but also introduce uncertainty into tissue description, leading to development of many clinical algorithms for reducing metal artifacts. The purpose of this study was, therefore, to investigate the accuracy and the clinical applicability by analyzing date from SMART MAR (GE) used in our institution. Methode: and material: For assessment of images, the original images were obtained after forming ROIs with identical volumes by using CIRS ED phantom and inserting rods of six tissues and then non-SMART MAR and SMART MAR images were obtained and compared in terms of CT number and SD value. For determination of the difference in dose by the changes in CT number due to metal artifacts, the original images were obtained by forming PTV at two sites of CIRS ED phantom CT images with Computerized Treatment Planning (CTP system), the identical treatment plans were established for non-SMART MAR and SMART MAR images by obtaining unilateral and bilateral titanium insertion images, and mean doses, Homogeneity Index(HI), and Conformity Index(CI) for both PTVs were compared. The absorbed doses at both sites were measured by calculating the dose conversion constant (cCy/nC) from ylinder acrylic phantom, 0.125cc ionchamber, and electrometer and obtaining non-SMART MAR and SMART MAR images from images resulting from insertions of unilateral and bilateral titanium rods, and compared with point doses from CTP. Result: The results of image assessment showed that the CT number of SMART MAR images compared to those of non-SMART MAR images were more close to those of original images, and the SD decreased more in SMART compared to non-SMART ones. The results of dose determinations showed that the mean doses, HI and CI of non-SMART MAR images compared to those of SMART MAR images were more close to those of original images, however the differences did not reach statistical significance. The results of absorbed dose measurement showed that the difference between actual absorbed dose and point dose on CTP in absorbed dose were 2.69 and 3.63 % in non-SMRT MAR images, however decreased to 0.56 and 0.68 %, respectively in SMART MAR images. Conclusion: The application of SMART MAR in CT images from patients with metal implants improved quality of images, being demonstrated by improvement in accuracy of CT number and decrease in SD, therefore it is considered that this method is useful in dose calculation and forming contour between tumor and normal tissues.

  • PDF

The variation of chracteristics induced by $Co^60$-$\gamma$ray at the interface and oxide layer of MOS sructure ($Co^60$-$\gamma$선 조사에 따른 MOS구조의 계면 및 산화막내에서의 특성변화)

  • 김봉흡;류부형;이상돈
    • Electrical & Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.269-277
    • /
    • 1988
  • P형 Si(100)로 제작한 MOS 커패시터에 $Co^{60}$-.gamma.선을 주사한 후 고주파 C-V특성 곡선으로 부터 방사선 조사에 의해 유발된 산화막안의 트랩전하의 거동 및 Si- $SiO_{2}$계면에서의 트랩밀도 분포의 변화를 검토하였다. 산화막 느랩전하는 .gamma.선 흡수선량 증가와 더불어 증가하다가 $10^{7}$ rad 부근에서부터 서서히 포화하는 경향이 나타났으며 게면트랩밀도의 분포모양은 흡수선량의 증가와 더불어 전형적인 이그러진 W자형에서 넓혀진 V자형 분포로 변화하였으나 최소값은 항상 진성페르미준위( $E_{i}$)부근에 있었으며 그 밀도는 1.0*$10^{11}$~7.5*$10^{11}$[개/$cm^{2}$/eV]로 계산되었다. 또한, 일정 바이어스전압하에서의 조사선량에 따른 $V_{fb}$ 의 변화는 현저하지는 않았으나 바이어스 전압을 +12V로 인가할 때 변화방향의 반전상태가 관측되었다. 그 이유로는 Si측의 계면 부근에서 일어난 눈사태 전자가 산화막내로 주입됨에 따라 도너형 양전하의 수가 감소되기 때문으로 추정되었다.되었다.

  • PDF

Evaluation of the Output Dose of a Linear Accelerator Photon Beams by Using the Ionization Chamber TM31010 Series through TG-51 Protocol to Postal Monitoring Output of RPC for 5 Years (TM31010 계열의 공동이온전리함과 TG-51을 이용한 선형가속기광자선의 5년간 출력선량 평가)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.92-98
    • /
    • 2011
  • This study is to keep the accuracy and stability of the output dose evaluations for linear accelerator photon beams by using the air ionization chambers (TM31010, 0.125 cc, PTW) through the Task Group 51 protocol. The absorbed dose to water calibration factor $N_{dw}{^{Co-60}}$ was delivered from the air kerma calibration factor $N_k$ which was provided from manufacture through SSDL calibration for determination of output factor. The ionization chamber of TM31010 series was reviewed the calibration factor and other parameters for reduce the uncertainty within ${\pm}2%$ discrepancy and we found the supplied $N_{dw}{^{Co-60}}$ which was derived from Nk has shown a -2.8% uncertainty compare to that of PSDL. The authors provided the program to perform the output dosimetry with TG-51 protocol as it is composed same screen of TG-51 worksheets. The evaluated dose by determination of output factor delivered to postal TLD block for comparison the output dose to that of MDACC (RPC) in postal monitoring program. The results have shown the $1.001{\pm}0.013$ for 6 MV and $0.997{\pm}0.012$ discrepancy for 15 MV X rays for 5 years followed. This study shows the evaluated outputs for linear accelerate photon beams are very close to that of international output monitor with small discrepancy of ${\pm}1.3%$ with high reliability and showing the gradually stability after 2010.

Comparative Studies on Absorbed Dose by Geant4-based Simulation Using DICOM File and Gafchromic EBT2 Film (DICOM 파일을 사용한 Geant4 시뮬레이션과 Gafchromic EBT2 필름에 의한 인체 내 흡수선량 비교 연구)

  • Mo, Eun-Hui;Lee, Sang-Ho;Ahn, Sung-Hwan;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • Monte Carlo method has been known as the most accurate method for calculating absorbed dose in the human body, and an anthropomorphic phantom has been mainly used as a method of simulating internal organs for using such a calculation method. However, various efforts are made to extract data on several internal organs in the human body directly from CT DICOM files in recent Monte Carlo calculation using Geant4 code and to use by converting them into the geometry necessary for simulation. Such a function makes it possible to calculate the internal absorbed dose accurately while duplicating the actual human anatomical structure. Thus, this study calculated the absorbed dose in the human body by using Geant4 associating with DICOM files, and aimed to confirm the usefulness by compare the result with the measured dose using a Gafchromic EBT2 film. This study compared the dose calculated using simulation and the measured dose in beam central axis using the EBT2 film. The results showed that the range of difference was an average of 3.75% except for a build-up region, in which the dose rapidly changed from skin surface to the depth of maximum dose. In addition, this study made it easy to confirm the target absorbed dose by internal organ and organ through the output of the calculated value of dose by CT slice and the dose value of each voxel in each slice. Thus, the method that outputs dose value by slice and voxel through the use of CT DICOM, which is actual image data of human body, instead of the anthropomorphic phantom enables accurate dose calculations of various regions. Therefore, it is considered that it will be useful for dose calculation of radiotherapy planning system in the future. Moreover, it is applicable for currently-used several energy ranges in current use, so it is considered that it will be effectively used in order to check the radiation absorbed dose in the human body.

Assesment of Absorbed Dose of Organs in Human Body by Cone Beam Computed Tomography using Monte Carlo Method (몬테칼로 기법을 이용한 CBCT의 인체 내 장기의 흡수선량 평가)

  • Kim, Jong-Bo;Im, In-Chul;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.41 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • Cone beam Computed Tomography(CBCT) is an increasing trend in clinical applications due to its ability to increase the accuracy of radiation therapy. However, this leaded to an increase in exposure dose. In this study, the simulation using Monte Carlo method is performed and the absorbed dose of CBCT is analyzed and standardized data is presented. First, after simulating the CBCT, the photon spectrum was analyzed to secure the reliability and the absorbed dose of the tissue in the human body was evaluated using the MIRD phantom. Compared with SRS-78, the photon spectrum of CBCT showed similar tendency, and the average absorbed dose of MIRD phantom was 8.12 ~ 25.88 mGy depending on the body site. This is about 1% of prescription dose, but dose management will be needed to minimize patient side effects and normal tissue damage.