• Title/Summary/Keyword: 방사선피폭선량

Search Result 960, Processing Time 0.024 seconds

Evaluation on the Radiation Exposure of Radiation Workers in Proton Therapy (양성자 치료 시 방사선 작업 종사자에게 미치는 방사선 피폭에 대한 평가)

  • Lee, Seung-Hyun;Jang, Yo-Jong;Kim, Tae-Yoon;Jeong, Do-Hyung;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2012
  • Purpose: Unlike the existing linear accelerator with photon, proton therapy produces a number of second radiation due to the kinds of nuclide including neutron that is produced from the interaction with matter, and more attention must be paid on the exposure level of radiation workers for this reason. Therefore, thermoluminescence dosimeter (TLD) that is being widely used to measure radiation was utilized to analyze the exposure level of the radiation workers and propose a basic data about the radiation exposure level during the proton therapy. Materials and Methods: The subjects were radiation workers who worked at the proton therapy center of National Cancer Center and TLD Badge was used to compare the measured data of exposure level. In order to check the dispersion of exposure dose on body parts from the second radiation coming out surrounding the beam line of proton, TLD (width and length: 3 mm each) was attached to on the body spots (lateral canthi, neck, nipples, umbilicus, back, wrists) and retained them for 8 working hours, and the average data was obtained after measuring them for 80 hours. Moreover, in order to look into the dispersion of spatial exposure in the treatment room, TLD was attached on the snout, PPS (Patient Positioning System), Pendant, block closet, DIPS (Digital Image Positioning System), Console, doors and measured its exposure dose level during the working hours per day. Results: As a result of measuring exposure level of TLD Badge of radiation workers, quarterly average was 0.174 mSv, yearly average was 0.543 mSv, and after measuring the exposure level of body spots, it showed that the highest exposed body spot was neck and the lowest exposed body spot was back (the middle point of a line connecting both scapula superior angles). Investigation into the spatial exposure according to the workers' movement revealed that the exposure level was highest near the snout and as the distance becomes distant, it went lower. Conclusion: Even a small amount of exposure will eventually increase cumulative dose and exposure dose on a specific body part can bring health risks if one works in a same location for a long period. Therefore, radiation workers must thoroughly manage exposure dose and try their best to minimize it according to ALARA (As Low As Reasonably Achievable) as the International Commission on Radiological Protection (ICRP) recommends.

  • PDF

저선량 방사선 영향과 발현암의 인과성 문제

  • Lee, Jae-Gi
    • Radioisotope journal
    • /
    • v.15 no.3
    • /
    • pp.78-92
    • /
    • 2000
  • 낮은 선량의 방사선피폭으로 인한 건강 위해의 여부에 대하여 과학적 현황을 고찰하였다. 선량과 영향 사이에 문턱 없는 선형비례 모델(LN-T모델)에 대해 역학적, 수학적, 방사선생물학적 측면의 긍정적 논리와 호메시스, 적응반응, 통계적 관점의 비판적 논거를 대비하여 평가하였다. 방사선 피폭이력자에게 발현한 확률적 영향 특히 백혈병을 포함한 암에 대해 그 질환의 방사선 인과성 판단에 대한 애로와 접근 방향을 논의하였다. 객관적인 평가 지표의 하나로 기인확률(PC)을 적용하되 근로자에 대한 제도적 배려 등 고려할 사항을 논의하였다.

  • PDF

Measurement of the Spatial Dose Rates During PET/CT Studies (전신 PET/CT 검사에서 공간선량률 측정)

  • Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.257-260
    • /
    • 2006
  • In order to evaluate the exposure to the radiologic technologists from patients who had been administrated with radiopharmaceuticals, we measured the spatial dose rates at $5{\sim}300\;cm$ from skin surface of patients using an proportional digital surveymeter, 1.5(PET scan) and 4hr(bone scan) after injection. In results, the exposure to the technologists in each procedure was small, compared with the dose limits of the medical workers. However, the dose-response relationships in cancer and hereditary effects, referred to as the stochastic effects, have been assumed linear and no threshold models ; therefore, the exposure should be minimized. For this purpose, the measurements of spatial dose rate distributions were thought to be useful.

  • PDF

The Evaluation of Patients' Radiation Dose During TACE of Interventional Radiology (TACE의 중재적 시술시 환자의 피폭선량 평가)

  • Lee, Seung-Youl;Lim, Hyun-Soo;Han, Man-Seok
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.209-214
    • /
    • 2011
  • Goal of this study was to measure effective radiation dose of highly exposed patients who were treated by TACE, interventional radiology from June to September 2010. The effective radiation dose was approximately measured by weighted DAP (dose area product) with the ionization chamber which is inserted in angiography equiment (Philips Allura Xper FD 20). Radiation dose was measured by TLD which was attached to patients' thyroid and genital gland. The average of ED (effective dose) was 18.43${\pm}$6.63 mSv per person and the average of radiation dose of thyroid and genital gland was 0.37 mSv, 0.77 mSv, respectively. The mean radiation dose of operators who wear the protector was 0.07 mSv for thyroid, and 0.01 mSv for genital gland, respectively. All staffs involved in TACE treatment, have to keep them aware and use the appropriate protectors to reduce the radiation dose of patient.

Assessment of Occupational Dose to the Staff of Interventional Radiology Using Monte Carlo Simulations (몬테카를로 방법을 이용한 중재방사선시술자에 대한 선량평가)

  • Lim, Young-Khi
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.213-217
    • /
    • 2014
  • Medical operations and diagnosis using interventional radiology techniques have been increased. The management and monitoring of occupational radiation exposure to the staff of interventional radiology become important, specially because they stand in close proximity to the patient. The operational radiation protection quantity, Hp(10) which can be obtained from personal dosimeter do not always represent the effective dose to the staff. So, in this study, to estimate the critical organ doses to the staff of interventional radiology, Monte Carlo calculations with mathematical human phantom and dose measurements with personal dosimeters were carried out for the major interventional radiology procedures using C-arm. Results showed that the values of Hp(10) measured by personal dosimeters were higher than critical organ doses which were calculated. And the calculated dose to thyroids was much higher than those of other critical organ doses. For the proper radiation protection of the medical staff of interventional radiology, additional radiation protection for thyroids as well as for whole body shielding like wearing a lead apron should be considered.

A Study on the Reduction of Absorbed Dose through the Insertion of a Shielding Material in the Intraoralsensor of Dental Radiography (치과 방사선촬영 시 구내 센서 내 차폐체 삽입을 통한 피폭선량 감소 연구)

  • Kim, A Yeon;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.273-279
    • /
    • 2022
  • In order to reduce the absorbed dose given to the patient during dental radiography, a sensor that inserts a shield into the intraoralsensor was designed. Using the designed sensor, the change in absorbed dose depending on whether or not a shield was used was evaluated. The system used to evaluate the absorbed dose is VEX-S300C from Vatech, and the energy spectrum of X-rays was obtained through SPEKTR simulation based on the irradiation conditions of 65 kV, 3 mA, and 0.15 sec, and the number of photons for each energy was derived. After designing the system through Genat4 Application for Tomographic Emission(GATE) simulation, the energy spectrum obtained was used as a radiation source to calculate the absorbed dose. Lead was used for the shield, and simulations were performed at 0.1 mm thickness intervals from 0.1 mm to 0.5 mm was evaluated. In the case of using an X-ray field with a diameter of 60 mm, the decrease in absorbed dose according to the presence or absence of a shield decreased exponentially as the thickness of the shield increased. In addition, when a 20 mm × 30 mm field was used, the absorbed dose was significantly reduced even when no shield was used, and it was confirmed that the absorbed dose was further reduced when a shield was used.

Patient Radiation Exposure Dose in Computed Tomography (전산화단층촬영장치에서 환자피폭선량)

  • Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • In case of a CT examinations, there is a difference in the distribution of radiation dose from that of general X-ray equipments, and it has been known to cause a great radiation exposure during the examinations. However, owing to its high reliability on the accuracy of a examinations result, its use has increased continuously. In consideration of such a circumstance, the CT equipment, radiation dose during CT examinations, diagnostic reference level, and solutions to reduce radiation dose were mentioned on the basis of previously reported data.

Reducing Radiation Exposure Dose on Operator by Using Lateral Protection in Neuro-Intervention (뇌혈관 중재적시술에 있어 측방향 차폐체를 이용한 시술자 피폭 선량 저감화 방법 연구)

  • Kim, Jongdeok;Ahn, ByeoungJu;Lee, Junhaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • The bi-plane cerebrovascular angiography radiation is done the radiation exposure at the forward and lateral direction as opposed to the one of the source. So, the exposure dose of radiation workers increases further. Therefore, the medical diagnostic radiation workers as well as patients is interested to ways to reduce the dose. The exposure dose of cerebral angiography and interventional radiology must be considered the primary radiation of X-ray tube directly, scattered primary radiation between lateral tube and lateral detector and relatively small secondary scatter radiation in the walls of room. The aim of study is that the exposure dose of primary and scatter radiation reduce as much as possible to install protection device of lateral protection than common shielding of table and ceiling. As a result, the dose of fluoroscopy was reduced approximately 3.64 times the gonads, thyroid approximately 3.13 times, 4.42 times around eyes. And the dose of DSA was reduced approximately 4.98 times the gonads, thyroid approximately 3.00 times, 1.67 times around eyes. Consequently, medical practitioners can be helpful for radiation dose-exposure for the lateral protection of bi-plane cerebrovascular angiography more than the common shield method in cerebrovascular angiography and interventional radiological procedures.

Mouse model system based on apoptosis induction to crypt cells after exposure to ionizing radiation (방사선에 전신 조사된 마우스 음와 세포의 아포토시스 유도를 이용한 생물학적 선량 측정 모델 개발 연구)

  • Kim, Tae-Hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.571-578
    • /
    • 2001
  • To evaluate if the apoptotic fragment assay could be used to estimate the dose prediction after radiation exposure, we examined apoptotic mouse crypt cells per 1,000 cells after whole body $^{60}Co$ $\gamma$-rays and 50MeV ($p{\rightarrow}Be^+$) cyclotron fast neutron irradiation in the range of 0.25 to 1 Gy, respectively. The incidence of apoptotic cell death rose steeply at very low doses up to 1 Gy, and radiation at all doses tigger rapid changes in crypt cells in stem cell region. These data suggest that apoptosis may play an important role in homeostasis of damaged radiosensitive target organ by removing damaged cells. The curve of dose-effect relationship for the data of apoptotic fragments was obtained by the linear-quadratic model $y=0.18+(9.728{\pm}0.887)D+(-4.727{\pm}1.033)D^2$ ($r^2=0.984$) after $\gamma$-rays irradiation, while $y=0.18+(5.125{\pm}0.601)D+(-2.652{\pm}0.7000)D^2$ ($r^2=0.970$) after neutrons in mice. The dose-response curves were linear-quadratic, and a significant dose-response relationship was found between the frequency of apoptotic cell and dose. These data show a trend towards increase of the numbers of apoptotic crypt cells with increasing dose. Both the time course and the radiation dose-response curve for high and low linear energy transfer (LET) radiation modalities were similar. The relative biological effectiveness (RBE) value for crypt cells was 2.072. In addition, there were significant peaks on apoptosis induction at 4 and 6h after irradiation, and the morpholoigcal findings of the irradiated groups were typical apoptotic fragments in crypt cells that were hardly observed in the control group. Thus, apoptosis in crypt cells could be a useful in vivo model for studying radio-protective drug sensitivity or screening test, microdosimetric indicator and radiation-induced target organ injury. Since the apoptotic fragment assay is simple, rapid and reproducible in the range of 0.25 to 1 Gy, it will also be a good tool for evaluating the dose response of radiation-induced organ damage in vivo and provide a potentially valuable biodosimetry for the early dose prediction after accidental exposure.

  • PDF

Effects of Dose Reduction Fiber Shielding Cloth on Scattering Rays in Off-target Site during Angiography (선량저감섬유(Dose Reduction Fiber) 차폐포의 혈관조영술(Angiography) 시술 시 비 시술 부위의 산란선 차폐 효과)

  • Kim, Yong-Jin;Han, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.393-400
    • /
    • 2020
  • Unlike conventional radiographic examinations, angiointerventional procedures have a high risk of radiation exposure to patients or operators due to prolonged radiation exposure time. This study was undertaken to examine effects of reducing the radiation risk by applying dose reduction fiber (DRF) shielding cloth during angiography. To investigate the properties of DRF shielding cloth, we measured the scattered radiation below and above a human phantom using a glass dosimeter, at site distances 10 cm away from the irradiated field. The results obtained reveal a 15 ~ 31% reduction of scattered radiation in the irradiation field, and 53 ~ 70% reduced radiation measured after phantom transmission. Taken together, our data indicate that application of DRF shielding cloth for radiation reduction at non-procedural sites during interventional procedure results in reduction of scattered doses to patients and operators, without affecting the medical examinations. We propose the use of DRF shielding during angiointerventional procedures, in order to reduce the risk of radiation exposure of patients and operators.