• Title/Summary/Keyword: 방사선피폭선량

Search Result 977, Processing Time 0.034 seconds

A study on the Radiation exposure of simple abdomen x-ray in Radiography (복부 단순 X선검사시 피복 선량에 관한 연구)

  • Ko In Ho;Lee Kyung Sung;Shin Dong Yong
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.27 no.2
    • /
    • pp.57-65
    • /
    • 2001
  • This study was performed to measure about exposure dose during simple abdomen x-ray Radiography. The exposure dose was measured by PDD, surface dose, percentage scatter dose, respectively. The result was as followed: 1. When tube voltage were increased wi

  • PDF

Evaluation of Residential Radiation Doses from Korean Atomic Power Plants - Effect of Socioenvironmental Inputs (국내 원전주변 주민 방사선 피폭선량 평가 - 입력변수의 영향)

  • 조대철;이갑복
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.223-229
    • /
    • 2003
  • Annual radiation dose of residential individuals near 4 nuclear power plants in Korea was calculated via K-DOSE 60 based on the updated ICRP-60. The critical exposure variables were chosen as radionuclides, exposed organs and intake pathways. From the calculation results, the critical nuclides were found to be $^3$H, $^{133}$ Xe, $^{60}$ Co for Kori plants and $^{14}$ C, $^{41}$ Ar for Wolsung plants. The most critical pathway was 'vegetable intake' for adults and 'milk intake' for infants. However, there was no preference in the effective organs. Sensitivity analyses showed that the chemical composition in a nuclide much more influenced upon the radiation dose than any other input parameters such as food intake, radiation discharge, and transfer/concentration coefficients by more than 10$^2$ factor. The effect of transfer/concentration coefficients on the radiation dose was negligible. All input parameters showed highly estimated correlation with the radiation dose, approxinated to 1.0.

  • PDF

A Study on the Thyroid dose high-energy Radiation Therapy of Lung Cancer (폐암 고에너지 방사선치료 시 갑상선 피폭에 관한 연구)

  • Yang, oh-nam;Lim, cheong-hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.167-168
    • /
    • 2015
  • 고에너지 의료용 선형가속기를 이용한 폐암 방사선치료 시 갑상선에 미치는 선량을 평가하였다. 산란광자의 영향은 3DCRT 시 평균 27.9mSv, IMRT에 있어서는 43.6mSv로 평가 되었다. 광중성자의 영향은 3DCRT 시 평균 3.2mSv, IMRT에 있어서는 평균 4.7mSv로 평가 되었다. 산란광자와 광중성자 모두 3DCRT 보다 IMRT가 높은 것으로 평가 되었다. 본 연구를 통하여 고에너지를 이용한 방사선치료 시 인접한 정상조직에 상당한 양의 산란선량이 영향을 주는 것으로 평가된 바와 같이 방사선을 이용한 암 치료 종사자는 이러한 내용을 충분히 인지하여 피폭 저감화를 위한 노력이 필요할 것으로 사료된다.

  • PDF

A Study on the Thyroid dose high-energy Radiation Therapy of Lung Cancer (폐암 고에너지 방사선치료 시 갑상선 피폭에 관한 연구)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.181-182
    • /
    • 2014
  • 고에너지 의료용 선형가속기를 이용한 폐암 방사선치료 시 갑상선에 미치는 선량을 평가하였다. 산란광자의 영향은 3DCRT 시평균 27.9mSv, IMRT에 있어서는 43.6mSv로 평가 되었다. 광중성자의 영향은 3DCRT 시 평균 3.2mSv, IMRT에 있어서는 평균 4.7mSv로 평가 되었다. 산란광자와 광중성자 모두 3DCRT 보다 IMRT가 높은 것으로 평가 되었다. 본 연구를 통하여 고에너지를 이용한 방사선치료 시 인접한 정상조직에 상당한 양의 산란선량이 영향을 주는 것으로 평가된 바와 같이 방사선을 이용한 암치료 종사자는 이러한 내용을 충분히 인지하여 피폭 저감화를 위한 노력이 필요할 것으로 사료된다.

  • PDF

Analysis of dose reduction of surrounding patients in Portable X-ray (Portable X-ray 검사 시 주변 환자 피폭선량 감소 방안 연구)

  • Choe, Deayeon;Ko, Seongjin;Kang, Sesik;Kim, Changsoo;Kim, Junghoon;Kim, Donghyun;Choe, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Nowadays, the medical system towards patients changes into the medical services. As the human rights are improved and the capitalism is enlarged, the rights and needs of patients are gradually increasing. Also, based on this change, several systems in hospitals are revised according to the convenience and needs of patients. Thus, the cases of mobile portable among examinations are getting augmented. Because the number of mobile portable examinations in patient's room, intensive care unit, operating room and recovery room increases, neighboring patients are unnecessarily exposed to radiation so that the examination is legally regulated. Hospitals have to specify that "In case that the examination is taken out of the operating room, emergency room or intensive care units, the portable medical X-ray protective blocks should be set" in accordance with the standards of radiation protective facility in diagnostic radiological system. Some keep this regulation well, but mostly they do not keep. In this study, we shielded around the Collimator where the radiation is detected and then checked the change of dose regarding that of angles in portable tube and collimator before and after shielding. Moreover, we tried to figure out the effects of shielding on dose according to the distance change between patients' beds. As a result, the neighboring areas around the collimator are affected by the shielding. After shielding, the radiation is blocked 20% more than doing nothing. When doing the portable examination, the exposure doses are increased $0^{\circ}C$, $90^{\circ}C$ and $45^{\circ}C$ in order. At the time when the angle is set, the change of doses around the collimator decline after shielding. In addition, the exposure doses related to the distance of beds are less at 1m than 0.5m. In consideration of the shielding effects, putting the beds as far as possible is the best way to block the radiation, which is close to 100%. Next thing is shielding the collimator and its effect is about 20%, and it is more or less 10% by controlling the angles. When taking the portable examination, it is better to keep the patients and guardians far enough away to reduce the exposure doses. However, in case that the bed is fixed and the patient cannot move, it is suggested to shield around the collimator. Furthermore, $90^{\circ}C$ of collimator and tube is recommended. If it is not possible, the examination should be taken at $0^{\circ}C$ and $45^{\circ}C$ is better to be disallowed. The radiation-related workers should be aware of above results, and apply them to themselves in practice. Also, it is recommended to carry out researches and try hard to figure out the ways of reducing the exposure doses and shielding the radiation effectively.

Measurement of Leakage and Design for the Protective Barrier of the High Energy Radiation Therapy Room (고 에너지 방사선 치료실의 차폐계산과 누출선량의 측정)

  • Chu, Sung-Sil;Park, Chang-Yun
    • Journal of Radiation Protection and Research
    • /
    • v.6 no.1
    • /
    • pp.34-40
    • /
    • 1981
  • The logical development of an optimum structural shielding design and the computation of protective barriers for high energy radiation therapy room, Toshiba 13 MeV. are presented. We obtained following results by comparison in between the precalculating values and actual survey after complete installation of radiogenerating units. 1. The calculating formula for the protective barrier written in NCRP report #34(1970) was the most ideal and economic calculating methods for the construction of barrier and to determine thickness for the meeting requirements of the number of patients of 80-100 in daily treatment. 2. The precalculating values of protective barrier are 5 times more protective than that of actual measurement. It is depending on radiation workload and utilization the datas most sequrely. 3. The dose rate during exposure are 2-10 mR/hr at out of the door and the controll room. 4. The foul smelling and ozone gas production from long exposure of cancer patients cannot be eliminated when the room is ill ventilated.

  • PDF

The Effects of Magnetic Field on TLD Glow Curve (자기장이 열형광선량계의 글로우 곡선에 미치는 영향)

  • Je, Jaeyong;Kang, Eunbo
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.415-418
    • /
    • 2013
  • Thermoluminescent dosimeter utilizes the fact that when irradiated specimen is heated up, some part of the absorbed energy is emitted from the specimen as light with longer wavelength. This research aims at analyzing the glow curves of four TLD-100 exposed to a magnetic field and those of other four TLD-100 not exposed to one by treating them with heat and irradiating them, which are commonly used as thermoluminescent dosimeter, in the same condition. As the result of the experiment, regarding the electrons captured by irradiation, some of the electrons of lower traps were combined with positive holes of valence band through the exposure to a magnetic field, and the peak size decreased by 48%. The reduction in the size of the lower traps caused the TLD-100 exposed to a magnetic field to display a low level of dose. In addition, low traps estimated activation energies are 1.6 eV and 1.5 eV.

Effect of Stitching Range on Radiation Dose to Eyeball, Thyroid, Breast, Pelvis in Whole Spine Radiography with Standing Position (선 자세 척추 전장 방사선검사 시 스티칭 범위가 장기(수정체, 갑상샘, 유방, 골반부)의 선량에 미치는 영향)

  • Min-Ji, Hong;Han-Yong, Kim;Dong-Hwan, Kim;Young-Cheol, Joo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.47-52
    • /
    • 2023
  • In whole spine radiography using the stitching technique, overlapping parts occur in the process of synthesizing the three segmented images, so some anatomical structures may be repeatedly exposed, and it has been thought that the dose increases as the scan range increases. However, in the whole spine radiography using the stitching technique in this study, under the condition that the stitching range is taken in the same three splits, the overlapping area decreases as the stitching range increases, so in the case of breasts included in the overlapping range, the dose value decreased by almost half as the stitching range increased from 90 cm to 105 cm. During spinal full-length radiological examination using the stitching method, an appropriately long stitching range could be set to reduce the exposure dose of the breast.

Measurement of Space Dose Distribution during Exposure Micro Computed Tomography (μ-CT) for Scattering Rays (Micro-CT 촬영 시 발생되는 산란선에 관한 공간선량률 측정)

  • Jung, Hongmoon;Won, Doyeon;Kwon, Taegeon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Non-invasive technique CT, called automated computed tomography, is used to detect lesion of a patient when diagnosing human body. Information obtained from CT plays an important role in assembling 3 dimensional images. Recently, new equipment, operated by CT, is required which can be appliable to physical and biological research. In accordance to this quest, micro-CT is invented that produce more detail and concrete information. Images supplied by CT are even more detailed and concrete, so it contributes much to the development of biology and polymer material engineering field. However, there has been little reliable reports regarding measuring information of space dose distribution about exposure dose limit of users operating micro-CT. In addition, little reports regarding space dose distribution of exposure has been known about unwanted diffraction light produced by usage of micro-CT. The exterior of micro-CT is covered by lead, which is for removing exposure of diffraction light. Thus, even if it is good enough to prevent exposure of diffraction light, consistent management of equipment will be required as time goes by and equipment are getting old as well. We measured space dose distribution regarding exposure of diffraction light of users operating micro-CT directly. Therefore, we suggest that proper management should be necessary for users operating micro-CT not to be exposed by unwanted diffraction light.

Assessment of Effective Dose for General Radiography of Adults Based on Diagnostic Reference Level(DRL) by Using PCXMC Program (진단참고준위(DRL)를 기준으로 PCXMC 프로그램을 이용한 성인의 일반촬영 부위별 유효선량 평가)

  • Jeong, Hee-Cheol;Lee, SamYol
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.807-812
    • /
    • 2018
  • In this study, we investigated the conditions used in setting the recommendation level of general radiography diagnostic reference and tried to evaluate the effective dose and biological evaluation using PCXMC v2.0 program. As a result based on the effective dose of male in ICRP 60, the highest Pelvis AP was 0.794 mSv. The lowest Chest PA was 0.050 mSv. In the case of ICRP 103, the highest T-Spine AP was 0.906 mSv The lowest Chest PA was 0.052 mSv. For 40 years old male and female adults, effective doses of general radiography were evaluated and even if the medical exposures are not subject to the limit of dose, efforts should be made to reduce the medical exposures of the people by keeping the dose below the recommended amount in order to minimize the probable effect of radiation hazard.