• Title/Summary/Keyword: 방사선치료 기법

Search Result 202, Processing Time 0.019 seconds

Contralateral Breast Dose Reduction Using a Virtual Wedge (가상쐐기를 이용한 반대측 유방선량감소)

  • Yeo, In-Hwan;Kim, Dae-Yong;Kim, Tae-Hyun;Shin, Kyung-Hwan;Chie, Eui-Kyu;Park, Won;Lim, Do-Hoon;Huh, Seung-Jae;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.230-235
    • /
    • 2005
  • Purpose: To evaluate the contralateral breast dose using a virtual wedge compared with that using a Physical wedge and an open beam in a Siemens linear accelerator. Materials and Methods: The contralateral breast dose was measured using diodes placed on a humanoid phantom. Diodes were placed at 5.5 cm (position 1), 9.5 cm (position 2), and 14 cm (position 3) along the medial-lateral line from the medial edge of the treatment field. A 6-MV photon beam was used with tangential irradiation technique at 50 and 230 degrees of gantry angle. Asymmetrically collimated $17{\times}10cm$ field was used. for the first set of experiment, four treatment set-ups were used, which were an open medial beam with a 30-degree wedged lateral beam (physical and virtual wedges, respectively) and a 15-degree wedged medial beam with a 15-degree wedged lateral beam (physical and virtual wedges, respectively). The second set of experiment consists of setting with medial beam without wedge, a 15-degree wedge, and a 50-degree wedge (physical and virtual wedges, respectively). Identical monitor units were delivered. Each set of experiment was repeated for three times. Results: In the first set of experiment, the contralateral breast dose was the highest at the position 1 and decreased in order of the position 2 and 3. The contralateral breast dose was reduced with open beam on the medial side ($2.70{\pm}1.46%$) compared to medial beam with a wedge (both physical and virtual) ($3.25{\pm}1.59%$). The differences were larger with a physical wedge ($0.99{\pm}0.18%$) than a virtual wedge ($0.10{\pm}0.01%$) at all positions. The use of a virtual wedge reduced the contralateral breast dose by 0.12% to 1.20% of the proscribed dose compared to a physical wedge with same technique. In the second experiment, the contralateral breast dose decreased in order of the open beam, the virtual wedge, and the physical wedge at the position 1, and it decreased in order of a physical wedge, an open beam, and a virtual wedge at the position 2 and 3. Conclusion: The virtual wedge equipped in a Siemens linear accelerator was found to be useful in reducing dose to the contralateral breast. Our additional finding was that the surface dose distribution from the Siemens accelerator was different from a Varian accelerator.

Feasibility Study of the microDiamond Detector for Measurement of Small Field Photon Beam (광자선 소조사면 선량측정을 위한 microDiamond 검출기의 유용성 고찰)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Ji, Young Hoon;Kim, Kum Bae;Lee, Sang Hoon;Min, Chul Kee;Jo, Gwang Hwan;Shin, Dong Oh;Kim, Seong Hoon;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.255-263
    • /
    • 2014
  • The dosimetry of very small fields is challenging for several reasons including a lack of lateral electronic equilibrium, large dose gradients, and the size of detector in respect to the field size. The objective of this work was to evaluate the suitability of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the small field dosimetry in cyberknife photon beams of 6 different collimator size (from 5 mm to 30 mm). Measurements included dose linearity, dose rate dependence, output factors (OF), percentage depth doses (PDD) and off center ratio (OCR). The results were compared to those of pinpoint ionization chamber, diamond detector, microLion liquid Ionization chamber and diode detector. The dose linearity results for the microDiamond detector showed good linearly proportional to dose. The microDiamond detector showed little dose rate dependency throughout the range of 100~600 MU/min, while microLion liquid Ionization chamber showed a significant discrepancy of approximately 5.8%. The OF measured with microDiamond detector agreed within 3.8% with those measured with diode. PDD curves measured with silicon diode and diamond detector agreed well for all the field sizes. In particular, slightly sharper penumbras are obtained by the microDiamond detector, indicating a good spatial resolution. The results obtained confirm that the new PTW 60019 microDiamond detector is suitable candidate for application in small radiation fields dosimetry.