• Title/Summary/Keyword: 방사선치료 기법

Search Result 199, Processing Time 0.033 seconds

Deep inspiration breath-hold (DIBH) 적용한 림프절이 포함된 왼편 유방암의 방사선 치료계획에 따른 주변 장기 선량 평가

  • Jeong, Da-Lee;Gang, Hyo-Seok;Choe, Byeong-Jun;Park, Sang-Jun;Lee, Geon-Ho;Lee, Du-Sang;An, Min-U;Jeon, Myeong-Su
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • Purpose: On the left side, breast cancer patients have more side effects than those on the right side because of unnecessary doses in normal organs such as heart and lung. DIBH is performed to reduce this. To evaluate the dose of peripheral organs in the left breast cancer including supraclavicular lymph nodes and internal mammary lymph nodes according to the treatment planning method of Conventional Radiation Therapy, Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy. Materials and Methods: We performed CT-simulation using free breathing and deep inspiration breath-hold technique for 8 patients including left supraclavicular lymph nodes and internal mammary lymph nodes. Based on the acquired CT images, the contour of the body is drawn and the convention is performed so that $95%{\leftarrow}PTV$, $Dmax{\leftarrow}110%$. Conventional Radiation Therapy used a one portal technique on the supraclavicular lymph node and used a field in field technique tangential beam on the breast. Intensity Modulated Radiation Therapy was composed of 7 static fields. Volumetric Modulated Arc Therapy was planned using 2 ARC with a turning radius of $290^{\circ}$ to $179^{\circ}$. The peripheral normal organs dose was analyzed by referring to the dose volume of Eclipse. Results: By applying the deep inspiration breath-hold technique, the mean interval between the heart and chest wall increased $1.6{\pm}0.6cm$. The mean dose of lung was $19.2{\pm}1.0Gy$, which was the smallest value in Intensity Modulated Radiation Therapy. The V30 (%) of the heart was $2.0{\pm}1.9$, which was the smallest value in Intensity Modulated Radiation Therapy. In the left anterior descending coronary artery, the dose was $25.4{\pm}5.4Gy$, which was the smallest in Intensity Modulated Radiation Therapy. The maximum dose value of the Right breast was $29.7{\pm}4.3Gy$ at Intensity Modulated Radiation Therapy. Conclusion: When comparing the values of surrounding normal organs, Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy were applicable values for treatment. Among them, Intensity Modulated Radiation Therapy is considered to be a suitable treatment planning method.

  • PDF

Development of New 4D Phantom Model in Respiratory Gated Volumetric Modulated Arc Therapy for Lung SBRT (폐암 SBRT에서 호흡동조 VMAT의 정확성 분석을 위한 새로운 4D 팬텀 모델 개발)

  • Yoon, KyoungJun;Kwak, JungWon;Cho, ByungChul;Song, SiYeol;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.100-109
    • /
    • 2014
  • In stereotactic body radiotherapy (SBRT), the accurate location of treatment sites should be guaranteed from the respiratory motions of patients. Lots of studies on this topic have been conducted. In this letter, a new verification method simulating the real respiratory motion of heterogenous treatment regions was proposed to investigate the accuracy of lung SBRT for Volumetric Modulated Arc Therapy. Based on the CT images of lung cancer patients, lung phantoms were fabricated to equip in $QUASAR^{TM}$ respiratory moving phantom using 3D printer. The phantom was bisected in order to measure 2D dose distributions by the insertion of EBT3 film. To ensure the dose calculation accuracy in heterogeneous condition, The homogeneous plastic phantom were also utilized. Two dose algorithms; Analytical Anisotropic Algorithm (AAA) and AcurosXB (AXB) were applied in plan dose calculation processes. In order to evaluate the accuracy of treatments under respiratory motion, we analyzed the gamma index between the plan dose and film dose measured under various moving conditions; static and moving target with or without gating. The CT number of GTV region was 78 HU for real patient and 92 HU for the homemade lung phantom. The gamma pass rates with 3%/3 mm criteria between the plan dose calculated by AAA algorithm and the film doses measured in heterogeneous lung phantom under gated and no gated beam delivery with respiratory motion were 88% and 78%. In static case, 95% of gamma pass rate was presented. In the all cases of homogeneous phantom, the gamma pass rates were more than 99%. Applied AcurosXB algorithm, for heterogeneous phantom, more than 98% and for homogeneous phantom, more than 99% of gamma pass rates were achieved. Since the respiratory amplitude was relatively small and the breath pattern had the longer exhale phase than inhale, the gamma pass rates in 3%/3 mm criteria didn't make any significant difference for various motion conditions. In this study, the new phantom model of 4D dose distribution verification using patient-specific lung phantoms moving in real breathing patterns was successfully implemented. It was also evaluated that the model provides the capability to verify dose distributions delivered in the more realistic condition and also the accuracy of dose calculation.

Error Analysis of Delivered Dose Reconstruction Using Cone-beam CT and MLC Log Data (콘빔 CT 및 MLC 로그데이터를 이용한 전달 선량 재구성 시 오차 분석)

  • Cheong, Kwang-Ho;Park, So-Ah;Kang, Sei-Kwon;Hwang, Tae-Jin;Lee, Me-Yeon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.332-339
    • /
    • 2010
  • We aimed to setup an adaptive radiation therapy platform using cone-beam CT (CBCT) and multileaf collimator (MLC) log data and also intended to analyze a trend of dose calculation errors during the procedure based on a phantom study. We took CT and CBCT images of Catphan-600 (The Phantom Laboratory, USA) phantom, and made a simple step-and-shoot intensity-modulated radiation therapy (IMRT) plan based on the CT. Original plan doses were recalculated based on the CT ($CT_{plan}$) and the CBCT ($CBCT_{plan}$). Delivered monitor unit weights and leaves-positions during beam delivery for each MLC segment were extracted from the MLC log data then we reconstructed delivered doses based on the CT ($CT_{recon}$) and CBCT ($CBCT_{recon}$) respectively using the extracted information. Dose calculation errors were evaluated by two-dimensional dose discrepancies ($CT_{plan}$ was the benchmark), gamma index and dose-volume histograms (DVHs). From the dose differences and DVHs, it was estimated that the delivered dose was slightly greater than the planned dose; however, it was insignificant. Gamma index result showed that dose calculation error on CBCT using planned or reconstructed data were relatively greater than CT based calculation. In addition, there were significant discrepancies on the edge of each beam while those were less than errors due to inconsistency of CT and CBCT. $CBCT_{recon}$ showed coupled effects of above two kinds of errors; however, total error was decreased even though overall uncertainty for the evaluation of delivered dose on the CBCT was increased. Therefore, it is necessary to evaluate dose calculation errors separately as a setup error, dose calculation error due to CBCT image quality and reconstructed dose error which is actually what we want to know.

Evaluation of Magnetic Resonance Imaging using Image Co-registration in Stereotactic Radiosurgery (정위방사선수술시 영상공동등록을 이용한 자기공명영상 유용성 평가)

  • Jin, Seongjin;Cho, Jihwan;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.235-240
    • /
    • 2017
  • The purpose of this study is to confirm the safety of the clinical application of image co - registration in steteotactic radiosurgery by evaluating the 3D positioning of magnetic resonance imaging using image co-registration. We performed a retrospective study using three-dimensional coordinate measurement of 32 patients who underwent stereotactic radiosurgery and performed magnetic resonance imaging follow-up using image co-registration. The 3 dimensional coordinate errors were $1.0443{\pm}0.5724mm$ (0.10 ~ 1.89) in anterior commissure and $1.0348{\pm}0.5473mm$ (0.36 ~ 2.24) in posterior commissure. The mean error of MR1 (3.0 T) was lower than that of MR2 (1.5 T). It is necessary to minimize the error of magnetic resonance imaging in the treatment planning using the image co - registration technique and to confirm it.

Assessment for the Utility of Treatment Plan QA System according to Dosimetric Leaf Gap in Multileaf Collimator (다엽콜리메이터의 선량학적엽간격에 따른 치료계획 정도관리시스템의 효용성 평가)

  • Lee, Soon Sung;Choi, Sang Hyoun;Min, Chul Kee;Kim, Woo Chul;Ji, Young Hoon;Park, Seungwoo;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.168-177
    • /
    • 2015
  • For evaluating the treatment planning accurately, the quality assurance for treatment planning is recommended when patients were treated with IMRT which is complex and delicate. To realize this purpose, treatment plan quality assurance software can be used to verify the delivered dose accurately before and after of treatment. The purpose of this study is to evaluate the accuracy of treatment plan quality assurance software for each IMRT plan according to MLC DLG (dosimetric leaf gap). Novalis Tx with a built-in HD120 MLC was used in this study to acquire the MLC dynalog file be imported in MobiusFx. To establish IMRT plan, Eclipse RTP system was used and target and organ structures (multi-target, mock prostate, mock head/neck, C-shape case) were contoured in I'mRT phantom. To verify the difference of dose distribution according to DLG, MLC dynalog files were imported to MobiusFx software and changed the DLG (0.5, 0.7, 1.0, 1.3, 1.6 mm) values in MobiusFx. For evaluation dose, dose distribution was evaluated by using 3D gamma index for the gamma criteria 3% and distance to agreement 3 mm, and the point dose was acquired by using the CC13 ionization chamber in isocenter of I'mRT phantom. In the result for point dose, the mock head/neck and multi-target had difference about 4% and 3% in DLG 0.5 and 0.7 mm respectively, and the other DLGs had difference less than 3%. The gamma index passing-rate of mock head/neck were below 81% for PTV and cord, and multi-target were below 30% for center and superior target in DLGs 0.5, 0.7 mm, however, inferior target of multi-target case and parotid of mock head/neck case had 100.0% passing rate in all DLGs. The point dose of mock prostate showed difference below 3.0% in all DLGs, however, the passing rate of PTV were below 95% in 0.5, 0.7 mm DLGs, and the other DLGs were above 98%. The rectum and bladder had 100.0% passing rate in all DLGs. As the difference of point dose in C-shape were 3~9% except for 1.3 mm DLG, the passing rate of PTV in 1.0 1.3 mm were 96.7, 93.0% respectively. However, passing rate of the other DLGs were below 86% and core was 100.0% passing rate in all DLGs. In this study, we verified that the accuracy of treatment planning QA system can be affected by DLG values. For precise quality assurance for treatment technique using the MLC motion like IMRT and VMAT, we should use appropriate DLG value in linear accelerator and RTP system.

Clinical Investigations of Major Salivary Gland Tumors (주타액선 종양의 임상적 고찰)

  • Kim Eun-Seo;Kim Young-Soo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.17 no.2
    • /
    • pp.210-215
    • /
    • 2001
  • Objectives: Salivary gland neoplasms are a diverse group of benign and malignant tumors with a wide range of biologic behaviors. The surgeon must understand the pathologic behavior of each tumor type to develop an appropriate treatment plan. The authors planned this study to evaluate our clinical experiences and establish a new treatment strategy. Materials and Methods: From Sep. 1997 to June 2001, 25 cases of major salivary gland tumors which were underwent surgery were evaluated retrospectively. Results: 20 cases were benign and 5 were malignant. Most(17) of benign cases were pleomorphic adenoma and they showed wide distribution in age. Also we experienced other benign such as warthin's tumor, oncocytoma. In malignant, there were 2 cases of carcinoma ex-pleomorphic adenoma, 2 cases of adenoid cystic carcinoma, and one lymphoma. In carcinoma ex-pleomorphic adenoma, one showed dismal prognosis in spite of multimodality and the other were recurrent to be salvaged. Conclusion: We concluded that salivary gland neoplasms are challenging because of their relative infrequency, inconsistent classification, and highly variable biologic behavior. We need to establish new effective strategies with the regard of factors influencing survival.

  • PDF

Application of SP Monitoring in the Pohang Geothermal Field (포항 지열 개발지역에서의 SP 장기 관측)

  • Lim Seong Keun;Lee Tae Jong;Song Yoonho;Song Sung-Ho;Yasukawa Kasumi;Cho Byong Wook;Song Young Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.164-173
    • /
    • 2004
  • To delineate geothermal water movement at the Pohang geothermal development site, Self-Potential (SP) survey and monitoring were carried out during pumping tests. Before drilling, background SP data have been gathered to figure out overall potential distribution of the site. The pumping test was performed in two separate periods: 24 hours in December 2003 and 72 hours in March 2004. SP monitoring started several days before the pumping tests with a 128-channel automatic recording system. The background SP survey showed a clear positive anomaly at the northern part of the boreholes, which may be interpreted as an up-flow Bone of the deep geothermal water due to electrokinetic potential generated by hydrothermal circulation. The first and second SP monitoring during the pumping tests performed to figure out the fluid flow in the geothermal reservoir but it was not easy to see clear variations of SP due to pumping and pumping stop. Since the area is covered by some 360 m-thick tertiary sediments with very low electrical resistivity (less than 10 ohm-m), the electrokinetic potential due to deep groundwater flow resulted in being seriously attenuated on the surface. However, when we compared the variation of SP with that of groundwater level and temperature of pumping water, we could identify some areas responsible to the pumping. Dominant SP changes are observed in the south-west part of the boreholes during both the preliminary and long-term pumping periods, where 3-D magnetotelluric survey showed low-resistivity anomaly at the depth of $600m\~1,000m$. Overall analysis suggests that there exist hydraulic connection through the southwestern part to the pumping well.

Comparison of Doses of Single Scan PBS and Layered Rescanning PBS Using Moving Phantom in Proton Therapy (양성자 치료에서 Moving Phantom을 이용한 Single Scan PBS와 Layered Rescanning PBS의 선량비교)

  • Kim, Kyeong Tae;Kim, Seon Yeong;Kim, Dae Woong;Kim, Jae Won;Park, Ji Yeon;Jeon, Sang Min
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.43-49
    • /
    • 2019
  • Purpose : We apply the Layered Rescanning PBS designed to complement the Pencil Beam Scanning(PBS), which is vulnerable to moving organs with the Moving Phantom, and compare the homogeneity with the single scan PBS. Methods and materials: Matrix X (IBA, Belgium) and Moving Phantom (standard imaging, USA) were used. A dose of 200 cGy was measured in the AP direction on a hypothetical tumor $10{\times}10{\times}5cm$. The plan type was planned as 4 kinds of sinlge scan PBS, rescan number 4, 8, 12 times. Were measured three times for each types. During the measurement, the respiratory cycle of the Moving Phantom was generally set to 4 seconds per cycle, and the movement radius in the S-I direction was set to 2 cm. In addition, beam on time was measured. Results : The mean values of $D_{max}$ in the PTV were $246.47{\pm}18.8cGy$, $223.43{\pm}8.92cGy$, and $222.47{\pm}7.7cGy$, $213.9{\pm}6.11cGy$ and the mean values of $D_{min}$ were $165.53{\pm}4.32cGy$, $173.13{\pm}11.94cGy$, $184.13{\pm}8.04cGy$, $182.67{\pm}4.38cGy$ and the mean values of $D_{mean}$ $192.77{\pm}6.98cGy$, $196.7{\pm}4.01cGy$, $198.17{\pm}4.96cGy$, $195.77{\pm}3.15cGy$ respectively. As the number of rescanning increased, the Homogeneity Index converged to 1. The beam on time was measured as 2:15, 3:15, 4:30, 5:37 on average. In the measurement process, in the low dose layer of the MU, the problem was found that it was not rescanned as many times as the set number of rescan. Conclusions : In the treatment of tumors with long-term movements, the application of layered rescanning PBS showed a more uniform dose distribution than single scan PBS. And as the number of rescan increase, the distribution of homogeneity is uniform. Compared with single scan plan and 12 rescan plan, HI value was improved by 0.32. Further studies are expected to be applicable to patients who can not be treated with respiratory synchronous radiation therapy.

Radiation Dose of Lens and Thyroid in Linac-based Radiosurgery in Humanoid Phantom (선형가속기형 방사선수술시 인형 팬텀에서 수정체 및 갑상선 선량)

  • Kim, Dae-Yong;Kim, Il-Han
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.517-529
    • /
    • 1998
  • Purpose : Although many studies have investigated the dosimetric aspects of stereotactic radiosurgery in terms of target volume, the absorbed doses at extracranial sites: especially the lens or thyroid - which are sensitive to radiation for deterministic or stochastic effect -have infrequently been reported. The aim of this study is to evaluate what effects the parameters of radiosurgery have on the absorbed doses of the lens and thyroid in patients treated by stereotactic radiosurgery, using a systematic plan in a humanoid phantom. Materials and Methods : Six isocenters were selected and radiosurgery was planned using the stereotactic radiosurgery system which the Department of Therapeutic Radiology at Seoul National University College of Medicine developed. The experimental radiosurgery plan consisted of 6 arc planes per one isocenter, 100 degrees for each arc range and an accessory collimator diameter size of 2 cm. After 250 cGy of irradiation from each arc, the doses absorbed at the lens and thyroid were measured by thermoluminescence dosimetry. Results : The lens dose was 0.23$\pm$0.08$\%$ of the maximum dose for each isocenter when the exit beam did not pass through the lens and was 0.76$\pm$0.12$\%$ of the maximum dose for each isocenter when the exit beam passed through the lens. The thyroid dose was 0.18$\pm$0.05$\%$ of the maximum dose for each isocenter when the exit beam did not pass through the thyroid and was 0.41$\pm$0.04$\%$ of the maximum dose for each isocenter when the exit beam Passed through the thyroid. The passing of the exit beam is the most significant factor of organ dose and the absorbed dose by an arc crossing organ decides 80$\%$ of the total dose. The absorbed doses of the lens and thyroid were larger as the isocenter sites and arc planes were closer to each organ. There were no differences in the doses at the surface and 5 mm depth from the surface in the eyelid and thyroid areas. Conclusion : As the isocenter and arc plane were placed closer to the lens and thyroid, the doses increased. Whether the exit beams passed through the lens or thyroid greatly influenced the lens and thyroid dose. The surface dose of the lens and thyroid consistently represent the tissue dose. Even when the exit beam passes through the lens and thyroid, the doses are less than 1$\%$ of the maximum dose and therefore, are too low to evoke late complications, but nevertheless, we should try to minimize the thyroid dose in children, whenever possible.

  • PDF

Comparison of Anisotropic Analytic Algorithm Plan and Acuros XB Plan for Lung Stereotactic Ablative Radiotherapy Using Flattening Filter-Free Beams (비편평화여과기 빔을 이용한 폐 정위절제방사선치료를 위한 AAA와 Acuros XB 계산 알고리즘의 치료계획 비교)

  • Chung, Jin-Beom;Eom, Keun-Yong;Kim, In-Ah;Kim, Jae-Sung;Lee, Jeong-Woo;Hong, Semie;Kim, Yon-Lae;Park, Byung-Moon;Kang, Sang-Won;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.210-217
    • /
    • 2014
  • This study investigated the dosimetric effects of different dose calculation algorithm for lung stereotactic ablative radiotherapy (SABR) using flattening filter-free (FFF) beams. A total of 10 patients with lung cancer who were treated with SABR were evaluated. All treatment plans were created using an Acuros XB (AXB) of an Eclipse treatment planning system. An additional plans for comparison of different alagorithm recalcuated with anisotropic analytic algorithm (AAA) algorithm. To address both algorithms, the cumulative dose-volume histogram (DVH) was analyzed for the planning target volume (PTV) and organs at risk (OARs). Technical parameters, such as the computation times and total monitor units (MUs), were also evaluated. A comparison analysis of DVHs from these plans revealed the PTV for AXB estimated a higher maximum dose (5.2%) and lower minimum dose (4.2%) than that of the AAA. The highest dose difference observed 7.06% for the PTV $V_{105%}$. The maximum dose to the lung was also slightly larger in the AXB plans. The percentate volumes of the ipsilateral lung ($V_5$, $V_{10}$, $V_{20}$) receiving 5, 10, and 20 Gy were also larger in AXB plans than for AAA plans. However, these parameters were comparable between both AAA and AXB plans for the contralateral lung. The differences of the maximum dose for the spinal cord and heart were also small. The computation time of AXB plans was 13.7% shorter than that of AAA plans. The average MUs were 3.47% larger for AXB plans than for AAA plans. The results of this study suggest that AXB algorithm can provide advantages such as accurate dose calculations and reduced computation time in lung SABR plan using FFF beams, especially for volumetric modulated arc therapy technique.