• Title/Summary/Keyword: 방사선장해방어

Search Result 36, Processing Time 0.021 seconds

A Model for Protective Behavior against the Harmful Effects of Radiation based on Medical Institution Classifications (의료기관 형태별 방사선장해 방어행위 모형)

  • Han, Eun-Ok;Kwon, Deok-Mun;Dong, Kyung-Rae;Han, Seung-Moo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.157-162
    • /
    • 2010
  • This study surveyed a total of 1,322 radiation technologist in health care institutions throughout Korea. This is a comparative study conducted on the levels of protective behavior against the harmful effects of radiation in heath care institutions which indicated that university hospitals and general hospitals showed higher level of protective behavior than for medical practitioners. This study found university hospitals have the following 7 characteristics to manage protective behavior against the harmful effects of radiation, protective environment, self-efficacy by distinction of task, self-efficacy, expectation of the protective behavior, the number of patients, level of the education related to the protection of the harmful effects of radiation and protective attitude. While general hospitals have the following 3 characteristics protective environment, expectation of the protective behavior and protective attitude. Hospitals have the following 4 characteristics protective environment, expectation of the protective behavior, protective attitude and self-efficacy. and medical clinics have characteristics protective environment.

A Study on Radio-Protection Mechanism of Platelet Cells After Injection of Alliin (알리인 투여 후 혈소판의 방사선 방어기전 연구)

  • Ji, Tae-Jeong
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.185-192
    • /
    • 2010
  • Platelets originating from Megakaryocyte are sensitive to radiation along with white blood cells, and thus these platelets are used as an index of radiation hazard as they decrease in advance. Thus, when there is a scarcity of platelets, dot hemorrhage occurs and it leads to decrease of blood corpuscle and a decline in immunity. In particular, when 4~6 Gy whole body irradiation is received, after three weeks, the platelets will decrease to the lowest level, which can be a cause of death by bleeding and anemia. Therefore, this study tried to identify the mechanism of platelet damage and protection effect. The protection substance used in the experiment is Alliin, which is a component of garlic, and it was observed by an Transmission Electron Microscope(TEM) after its injection to the rat's tail vein. In the study, it was found that the cell membrane was severely damaged in a 10-day progressed platelet organ after receiving 5 Gy irradiation. It billowed as balloon-like figure and the glycocalyx became hyperplasia. The minute organ was damaged to the point that it was beyond recognition in a 20-day progressed platelet organ after receiving irradiation, and the cytoplasmic contents were exposed to epilepsy parts and outrageously damaged. Furthermore, the form of granules could also not be observed. A hole was formed in the middle, and the damaged organ was found in a 30-day progressed platelet. However, the form of granules was consistently maintained in the experiment group injecting Alliin, as with the control group, and there was no damage to the cell membrane recognized. Thus, it was possible to verify the effectiveness of radiation protection of the platelet when Alliin was injected to the blood vessel.

Study on Radioprotection of Alliin and Damage Mechanism in Hepatocyte After Irradiation (방사선 피폭 시 간세포의 손상 기전과 알리인의 방어효과)

  • Ji, Tae-Jeong;Kim, Won-Tae
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.623-630
    • /
    • 2016
  • Liver tissue damage by a radiation exposure caused a jaundice and ascitic fluid e form harden atrophy. The reason for this lies in morphological damage of a liver cells. This study tried that observe damage mechanism of the cell organelles. It was especially observed mitochondria, endoplasmic reticulum and nuclear membrane associated with energy metabolizable. also, This study had with a radio-protector development research at the same time. Radio-protector was used to alliin that has an blood flow increase. Cell observation make used of transmission electron microscope(TEM). The result of an experiment, 7Gy of whole body irradiation was caused an inflammation in cell organelles and hypertrophy of the nucleus membrane. After 20 days, The hepatocyte has been observed in a damaged membrane on peroxisome, mitochondria and vacuole of the cell organelles. After 30 days, The hepatocyte has been observed in disconnected ribosomes on a rough endoplasmic reticulum. There was looked a giant lipoblast. There was clearly normal observed a mitochondria and nucleus membrane in the hepatocyte after alliin injection. aslo, It was no damaged the nucleus membrane. therefore, It was identified portion a radio-protector effect from alliin.

The Radioprotective Effect of Ginseng Extracts on the liver in Mice that was irradiated by radiation (방사선이 조사된 생쥐 간에서 인삼추출물이 방사선 방어효과에 미치는 영향)

  • Ko, In-Ho;Chang, Chae-Chul;Koh, Jeong-Sam
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.35-43
    • /
    • 2004
  • Radioprotective effects of ginseng extracts on liver damage induced by high energy x-ray were studied. To one group of ICR male mice were given white(50 mg/kg/day for 7days, orally) and fermenta ginseng extracts(500 mg/kg/day for 7days, orally) before irrdiation. To another group were irradiated by 5 Gy dose of high energy x-ray. Contrast group were given with saline(0.1 ml). This study also investigated the radioprotective effect between SOD, CAT, hydrogen peroxide and ginseng extracts on hepatic damage. This study measured the level of superoxide dismutase(SOD), catalase(CAT), hydrogen peroxide($H_2O_2$) in liver tissue. Administrating orally white (50 mg/kg/day for 7days, orally) and fermenta ginseng extracts(500 mg/kg/day), the activity of SOD, CAT were generally increased and the hydrogen peroxide($H_2O_2$) was decreased. After irradiation, the activity of SOD, CAT were generally decreased and the hydrogen peroxide($H_2O_2$) was increased. Therefore, ginseng extracts increased antioxidative enzyme activity. And We know that the antioxidatant effect of extracts from white and fermenta ginseng protect radiation damage by direct antioxidant effect involving SOD, CAT. It was included that ginseng can protect against radiation damage through its antioxidatant properties.

  • PDF